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Abstract
Our environments are inherently structured, with cer-
tain stimuli or events having a higher probability of co-
occurring. Statistical learning (SL), the ability to extract
such regularities, is a powerful cognitive mechanism. The
majority of SL studies to date, however, have treated our
sensory environments as stable, assuming only a single
set of to-be-learned regularities. In doing so, they over-
looked the flexibility humans need to process and repre-
sent changes in the statistical patterns that make up our
environments. In the current study, we exposed partici-
pants to visual and auditory sequences containing statis-
tical regularities that changed throughout exposure. Our
online learning measure, based on the reaction-time ben-
efit in detecting predictable stimuli, showed that partic-
ipants successfully learned both the initial and updated
structure in the auditory modality. Our offline test, by
contrast, only provided evidence for learning of the first
structure in the auditory modality.

Keywords: Statistical learning; flexibility; target detection;
pattern recognition; primacy effect; modality- and domain-
specificity

Introduction
The environments we navigate are rife with regularities, rang-
ing from certain sounds or words that tend to co-occur in nat-
ural language to predictable patterns of traffic flow. Statistical
learning (SL), the ability to extract such regularities from sen-
sory information (Frost et al., 2015), is a fundamental ability
that subserves many of our cognitive functions, including at-
tention (Theeuwes et al., 2022; Zhao et al., 2014; Jiang et al.,
2013), linguistic abilities (Erickson & Thiessen, 2015; Siegel-
man, 2019) and prediction (Turk-Browne et al., 2010; Li et al.,
2024). Previous studies extensively demonstrated that people
are remarkably good at extracting and representing the statis-
tical properties of their environments in unsupervised learning
paradigms.

While the research on SL that followed the seminal work
of Saffran et al. (1996) which showed that infants are sensi-
tive to the transitional probabilities in continuous speech input
has undoubtedly advanced our understanding of when and
how learning of environmental structure is achieved (Frost et
al., 2019), one important aspect of SL has been largely over-
looked: its flexibility. Current approaches to SL have viewed

the environment as static in terms of its structure, treating
knowledge about the statistical properties of an environment
as the end state. Many environments, however, are dynamic
rather than fixed. Simply learning the structure of an envi-
ronment without subsequently monitoring for and adapting to
changes in regularities would be highly maladaptive (Frost et
al., 2025).

To date, only a handful of studies have investigated the abil-
ity to adapt to changing regularities in the context of SL. A
consistent finding in these experiments is a primacy effect: in
a post-learning test, participants are typically worse at recog-
nizing the patterns of a second compared to a first artificial
language structure (Gebhart, Aslin & Newport, 2009; Franco,
Cleeremans & Destrebecqz, 2011; Weiss et al., 2009). An
important limitation of these so-called offline measures is that
they only inform us about what pattern knowledge remains af-
ter learning, rather than how that knowledge is accumulated
over time. Addressing this methodological limitation, Siegel-
man et al. (2018) used self-paced progression through a vi-
sual input stream as an online measure of learning an ini-
tial structure and adapting to a changed structure. Their re-
sults revealed that participants were generally slower to learn
the updated structure compared to the first structure, but no
difference was found in offline test performance. Note that
self-paced exposure allows for varying exposure times per
item/pair, likely impacting the learning process one is attempt-
ing to measure. In the current study, we used a target detec-
tion task as an online measure of adapting to changing regu-
larities in both the auditory and visual modality.

Method and Results
Exposure Phase
Participants (N = 120) were first exposed to sequences of
items, one item at a time. Depending on the modality, items
were auditory consonant-vowel syllables or abstract visual
shapes. All participants were exposed to both modalities, with
the order of modalities counterbalanced across participants.
Importantly, while individual items were presented at a fixed
rate, the eight unique items of each stream formed 4 embed-
ded pairs in the first half (structure 1 or S1), and were shuffled
into 4 different pairs (structure 2 or S2) in the second half of
each stream (see Figure 1). In addition to viewing the stream,
participants were instructed to press a button as fast as pos-
sible upon detecting a prespecified target item. If participants



are sensitive to the transitional probabilities between items,
they should become faster at detecting targets in the second
(predictable) position as opposed to the first (unpredictable)
position of a pair. We used a linear mixed effects model to
model reaction times in function of the modality (visual or au-
ditory), structure (first or second) and position (predictable or
unpredictable). The results suggest that participants learned
the embedded pairs, both of the first and the second structure,
but only in the auditory modality (see Figure 2).

Figure 1: Illustration of a visual and auditory stream

Figure 2: Estimated online learning effects per modality

Test Phase
After the target detection task, the majority of participants (N
= 110) performed an old/new judgment task. On each trial, a
combination of two items was presented and they had to indi-
cate 1) whether the pair had been part of the input stream or
not, and 2) how confident they felt in their decision. The com-
binations of items that formed the test items could be one of
five types. Firstly, a test item could be a true pair of the first or
the second structure of a stream which participants encoun-
tered during the exposure phase. Secondly, test items could
be group foils, which were not encountered during the expo-
sure phase, but did respect the group identity of either an S1
or S2 pair (i.e., a reversed true pair). Thirdly, test items could
also be control foils, which were novel in every way as they did
not respect the order or the group identity of any of the pairs.

We found that participants were significantly better at recog-
nizing pairs from the first structure, compared to both control
foils and pairs of the second structure. We observed a similar
pattern for the confidence ratings. Additionally, we observed
no differences in group identity representations between both
structures. These effects were once again solely driven by the
auditory condition (see Figure 3 for estimated odds ratios of
endorsing test items as old).

Figure 3: Estimated offline auditory learning effects

Discussion and Conclusion
Based on our online measure of learning, we found no evi-
dence to support a primacy effect. Participants were able to
learn the embedded patterns of both structures, at least in the
auditory modality. Our offline learning measure, in contrast,
revealed above chance performance in recognizing items of
a first, but not of a second structure, pointing towards a pri-
macy effect. Our findings align with and extend previous work
arguing that on- and offline learning measures may tap into
different aspects of the learning process (Batterink & Paller,
2017; Lukics & Lukács, 2021), and crucially, the adaptation in
the face of structural changes (Siegelman et al., 2018). Re-
lying solely on offline measures to gauge learning and adap-
tation therefore seems suboptimal, as these measures do not
capture an important aspect of the learning process.

Finally, despite the comparable structure and structural
change in speech and shape streams, we observed a differ-
ent pattern of results, with no significant on- or offline learn-
ing in the visual modality. This finding points toward im-
portant modality or domain differences and lower-level con-
straints—for example, with temporal and spatial regularities
being favorably learned in the auditory and visual modali-
ties, respectively. (Conway & Christiansen, 2005; Frost et al.,
2015).
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