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Abstract
Spatial navigation relies on a variety of signals across dif-
ferent sensory modalities to guide movement towards a
goal. While these signals can sometimes be redundant,
they are crucial in the face of uncertainty, where navi-
gating agents may have to switch between these signals
or integrate them to determine the moving direction. We
model these interactions in a deep reinforcement learning
agent that uses two signals, vision and goal-vectors, to
navigate. By analysing the agent’s behavior and spatial
representations, we show that it can successfully navi-
gate using each signal independently or by integrating
both. We show that this flexibility enables the agent to
successfully cope with changing environments or with
signals becoming contaminated with noise. Interestingly,
our model also highlights a trade-off — when integration
is unnecessary, such as in an unchanging environment,
relying on a single stable signal improves navigation. We
use this insight to explain counterintuitive experimental
results. Additionally, we show that the place-cell-like spa-
tial representations emerging in the network are shaped
by both signals, albeit to varying degrees.
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Background
Real-world navigation is inherently complex, involving dy-
namic and uncertain environments and intermittent access to
sensory signals. A strategy for addressing these challenges is
to integrate multiple sources of information. However, this in-
tegration is not trivial — signals vary in their reliability and sus-
ceptibility to noise. Effective navigation thus requires agents
to flexibly combine these signals, weighting them dynamically,
or relying on a single one when appropriate. Although ani-
mals demonstrate this capacity, the underlying mechanisms
remain unclear. Experimental studies have mainly examined
this question through the interaction of two key signals, vi-
sion and self-motion, and their influence on behavior and spa-
tial representations (Chen, King, Burgess, & O’Keefe, 2012;
Petrini, Caradonna, Foster, Burgess, & Nardini, 2016). We
investigate the same question using a deep reinforcement
learning (RL) model (Mnih et al., 2015) that uses both these
signals to navigate.

Simulation setup
We simulate a task inspired by the Morris Water Maze (Morris,
1981), where the agent navigates to an unmarked goal in
the environment from different starting points randomly as-
signed at the beginning of each trial. The walls are marked

Figure 1: Schematic of model architecture. The network
has two streams that process visual and goal-vector inputs be-
fore being combined. The output layer consists of action units
that translate (grey icons) or rotate (black icons) the agent.

with distinct colors, serving as distal landmarks. We use the
CoBeL-RL framework to generate the environments and train
the agent (Diekmann et al., 2023). At each time-step, the
agent receives visual input and a pre-computed goal vector,
a proxy for the result of integrating self-motion, from the simu-
lation environment (Fig. 1).

Results

We first test the ability of the agent to learn to navigate us-
ing each signal individually as well as integrate them. To this
end, we periodically and randomly remove either input during
training. The agent is able to successfully learn the task un-
der these conditions, and test trials show that it can navigate
using either input alone, even when the signals are subject
to substantial noise. We next simulate a scenario common
in experiments, where vision alone is sufficient for successful
navigation. We hypothesize that in such cases, integrating a
noisy signal with a reliable one may impair performance, and
test our hypothesis, as we discuss below.

Combining multiple sensory signals Our findings indicate
that when the task does not explicitly require the agent to nav-
igate using each input independently, it relies more on the
visual stream than on the vector stream (Fig. 2A). Further,
when the agent is trained with increasing noise in the vector
input, it begins to rely almost exclusively on the visual input,
effectively disregarding the vector input, reflected in poor test
performance when navigating using the vector stream alone
(Fig. 2A, left, grey bars). In addition, the difference in test per-
formance between using both inputs and visual input alone



Figure 2: Behavior and spatial representations in the agent. A:Test performance of agents trained with noise in vector input
(left) and visual input (right). Agents learned to ignore the vector input for higher levels of noise. B: Model (top) and experimental
(bottom) results for navigation in light and dark conditions C: Spatial representations in the model. Left: Place-like units emerge
in the model, and are affected by the removal of either input. Right : Examples of place-like units and the effect of removing each
input on the firing field.

diminishes, becoming negligible at high noise levels (Fig. 2A,
left, yellow and white bars). In contrast, noise in the visual
stream does not lead the agent to completely disregard it,
even with higher noise (Fig. 2A, right, yellow bars). Instead,
the agent continues to integrate both streams, albeit to varying
degrees.

We apply this finding to model the experimental find-
ings of Rochefort et al. (2011), who examined navigation in
cerebellar-lesion and control mice under light and dark condi-
tions. The authors hypothesize that the cerebellum supports
navigation through its role in path integration. In our model,
control mice are represented by agents with low vector noise
(σ = 0.2), while cerebellar-lesion mice are modeled as agents
with high vector noise (σ = 0.5), simulating impaired path in-
tegration. When tested under light conditions, both agents
improve navigation over time, in line with the experimental
results (Fig. 2B). Our model also accounts for the small but
consistent advantage observed in cerebellar-lesion mice un-
der light conditions. This effect arises in our model because
agents with high vector noise rapidly learn to disregard the un-
reliable vector input when visual cues are available, whereas
agents with lower noise continue to integrate both inputs, re-
sulting in slower learning. However, this advantage comes at

the cost of robustness, as shown by the inability of high-noise
agents and cerebellar-lesion mice to learn in the absence of
visual input.

Spatial representations in the model We also examined
the spatial representations that emerged in the network to
support navigation, and the extent to which these representa-
tions are influenced by the two input streams. To assess this,
we selectively removed each input and examined the impact
on the spatial representations. We found several place-cell-
like units in the network. Removal of either input stream led
to varying degrees of disruption of these units. Some units
required the integration of both input streams to maintain their
spatial tuning, while others preserved their firing fields with
access to only one input stream (Fig. 2C).

In conclusion, we demonstrate that a deep RL agent can
learn to navigate using multiple sensory signals, and flexibly
integrate them based on their reliability. Our model replicates
experimental findings and offers insight into how animals may
navigate in the face of uncertainty with noisy or missing inputs.
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