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Abstract

The human visual system is remarkably immature at birth,
exhibiting initially degraded spatial and temporal vision.
While early spatial degradations have been proposed to
provide important benefits to the developing visual sys-
tem, less is known about the potential adaptive signifi-
cance of early temporal immaturities. Here, we investi-
gated this possibility computationally, using 3D convolu-
tional neural networks trained on a temporally meaningful
classification task. We systematically manipulated spa-
tial and temporal blur when training on the Something-
Something V2 dataset, which critically depends on tem-
poral order. Analysis of learned receptive fields revealed
that initial exposure to temporal blur led to longer-range
temporal processing, persisting even after transitioning
to clear temporal inputs. Such developmental trajectory
commencing with initial temporal blur also significantly
enhanced generalization performance compared to train-
ing with high temporal resolution input or corresponding
spatial blur alone. These findings extend the concept of
adaptive developmental degradations into the temporal
domain, suggesting that immaturities in temporal vision
may instantiate important mechanisms for robust percep-
tion later in life.
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Introduction

The human visual system is remarkably immature at birth. For
instance, newborns initially exhibit significantly reduced con-
trast sensitivity (Kiorpes, 2016), visual acuity (Dobkins, Lia,
& Teller, 1997), and color sensitivity (Lenassi, Likar, Stirn-
Kranjc, & Brecelj, 2008), experiencing gradual improvements
throughout the first months or years. Building on past pro-
posals (Turkewitz & Kenny, 1982; Newport, 1988; Elman,
1993), recent work suggests that these early degradations
might have functional significance. Early exposure to blurred
visual inputs has been proposed to yield spatially extended re-
ceptive fields (L. Vogelsang et al., 2018), better generalization
in face recognition (Jang & Tong, 2021), and enhanced visual
category learning (Jinsi, Henderson, & Tarr, 2023). Similarly,
initially degraded color vision may induce greater resilience to
color variations later in life (M. Vogelsang et al., 2024).

However, research on the role of developmental degrada-
tions has largely focused on spatial vision, neglecting tempo-
ral aspects of processing. Although temporal vision typically
matures faster than its spatial counterpart, the state of ini-
tial immaturity is pronounced (Banks, 1982; Ellemberg, Lewis,
Liu, & Maurer, 1999). This raises the question of whether re-
duced temporal acuity in the first months of life might confer
adaptive benefits similar to the spatial domain. Here, we com-
putationally explore this possibility using deep convolutional
neural networks (3D-CNNs) trained on temporally meaningful
classification tasks.

Methodology
We adapted the AlexNet (Krizhevsky, Sutskever, & Hinton,
2012), modifying its first convolutional layer from 96 recep-
tive fields (RFs) of size 11× 11 to 48 RFs of size 22× 22,
to allow for flexibility in learned receptive field structures. We
then temporally expanded the layer to include 11 time frames,
yielding RFs of size 22×22×11.

To select an appropriate training dataset, we evaluated both
Kinetics-600 (Carreira, Noland, Banki-Horvath, Hillier, & Zis-
serman, 2018) and Something-Something V2 (SSv2) (Goyal
et al., 2017). As shown in Table 1, temporal order was crit-
ical for SSv2 but not for Kinetics-600 (training on shuffled
videos led to a drop of 16.6% in performance for the former but
only 3.4% for the latter). Similarly, inspection of learned RFs
when trained on SSv2 revealed markedly slower spatiotem-
poral movements indicative of more temporally-extended pro-
cessing, relative to training on Kinetics-600. We thus selected
SSv2 as our main dataset for subsequent simulations.

Training Normal testing Shuffled testing

Kinetics (normal) 0.518 0.162
Kinetics (shuffled) 0.324 0.484
SSv2 (normal) 0.284 0.017
SSv2 (shuffled) 0.092 0.118

Table 1: Classification accuracy for training/testing on shuf-
fled vs. non-shuffled videos, for Kinetics-600 and Something-
Something V2 (SSv2).

Videos were temporally cropped to 48 central frames, spa-
tially resized to 128×128 pixels, scaled to a range of [−1,1],
and randomly flipped horizontally. For training and testing on
blur, Gaussian spatial blur (σ= 4) and Gaussian temporal blur
(σ = 2) were applied. Training was carried out using SGD with
a Nesterov momentum of 0.9, a learning rate of 0.001, and a
batch size of 32. Models were trained while systematically
varying the degree of spatial and temporal blur. We define
training with blurred inputs as low-frequency (L), since the ap-
plied blur leaves predominantly lower frequencies, and others
maintaining low and high frequencies as high-frequency (H).
We thus refer to conditions as spatial low (SL) or spatial high
(SH ), and similarly as temporal low (TL) or temporal high (TH ),
adopting the following nomenclature:

• No temporal blur: spatial high, temporal high (SHTH ) and
spatial low, temporal high (SLTH ).

• Temporal blur: spatial high, temporal low (SHTL) and spatial
low, temporal low (SLTL).

• Shuffled temporal order, removing meaningful temporal
contiguity: SHTH -shuffled as well as SLTH -shuffled.

• Staged training: SLTL-to-SHTH and SHTL-to-SHTH , where
the training input type changes after the first half of epochs.



Following training, we analyzed the temporal frequency
content of individual RFs by applying an FFT (without the
constant component; averaged across the two spatial dimen-
sions) and computing a normalized amplitude-weighted aver-
age of frequency.

Results

First-layer representations

As depicted in Figure 1, temporal blur lowered the temporal
frequency of learned spatiotemporal receptive fields (RFs) in
the first convolutional layer. This led to RFs exhibiting slow
and smooth motion across frames (depicted in Figure 2). No-
tably, this effect occurred irrespective of spatial blur (SLTL
vs. SHTL; Figures 1 and 2). In contrast, training networks
with temporally shuffled inputs resulted in receptive fields with
higher temporal frequencies. Interestingly, staged training –
transitioning from initially blurred temporal inputs to clear tem-
poral inputs later – maintained RF characteristics shaped dur-
ing the initial training phase. This robustness was evident
regardless of whether the initial training phase involved high
spatial acuity (SHTL-to-SHTH ) or low spatial acuity (SLTL-to-
SHTH ), demonstrating persistent effects of early temporal ex-
perience across full developmental training.

Figure 1: Distribution of temporal frequency metric scores of
individual RFs as a function of training condition.

Generalization performance

Table 2 summarizes model classification accuracy across
training conditions, when tested on spatial blur, temporal blur,
both, or neither. Training with spatial blur alone (SLTH ) re-
sulted in only minor generalization improvements relative to
standard (no spatial blur) training (SHTH ). In contrast, training
with temporal blur alone (SHTL) substantially improved perfor-
mance, approaching the benefits observed when both spa-
tial and temporal blur were combined (SLTL). However, opti-
mal performance emerged from the two developmentally in-
spired trajectories that began training with temporal blur, sub-
sequently transitioning to spatially and temporally clear inputs.

Figure 2: RFs with the 3 lowest vs. 3 highest temporal fre-
quency metric scores, for training without blur, with temporal
blur, and with shuffled temporal frames.

Test SHTH SHTL SLTH SLTL

SHTH 0.284 0.115 0.244 0.087
SLTH 0.254 0.119 0.269 0.121
SHTL 0.174 0.251 0.145 0.216
SLTL 0.176 0.232 0.170 0.244
Staged 1 0.265 0.206 0.225 0.164
Staged 2 0.258 0.191 0.243 0.178

Table 2: Classification accuracy across several training and
testing conditions. Staged 1/2 refer to SHTL-to-SHTH and
SLTL-to-SHTH .

Discussion
Our findings begin to extend previous studies on the func-
tional significance of developmental trajectories that progress
from impoverished to enriched visual inputs (L. Vogelsang et
al., 2018; Jang & Tong, 2021; Yoshihara, Fukiage, & Nishida,
2023) into the temporal domain. Specifically, initial experience
with temporally blurred visual input yields temporally-extended
receptive fields, subserving potentially important perceptual
functions later on. Future research should investigate the im-
plications for richer and more varied visual contexts as well as
how findings depend on architectures. Collectively, our results
highlight the importance of the temporal dimension in compu-
tational vision and illustrate the productive synergy between
studies of computational modeling and human development.



Acknowledgements

This work has been supported by NIH grant R01EY020517 to
Pawan Sinha. Lukas Vogelsang is supported by a grant from
the Simons Foundation International to the Simons Center for
the Social Brain at MIT. Marin Vogelsang is supported by the
Japan Society for the Promotion of Science (JSPS), Overseas
Research Fellowship and the Yamada Science Foundation.

References

Banks, M. S. (1982). The development of spatial and temporal
contrast sensitivity. Current Eye Research, 2(3), 191–198.

Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C., & Zis-
serman, A. (2018). A short note about kinetics-600. arXiv
preprint arXiv:1808.01340.

Dobkins, K. R., Lia, B., & Teller, D. Y. (1997). Infant
color vision: Temporal contrast sensitivity functions for chro-
matic (red/green) stimuli in 3-month-olds. Vision Research,
37 (19), 2699–2716.

Ellemberg, D., Lewis, T. L., Liu, C. H., & Maurer, D. (1999).
Development of spatial and temporal vision during child-
hood. Vision research, 39(14), 2325–2333.

Elman, J. L. (1993). Learning and development in neural net-
works: The importance of starting small. Cognition, 48(1),
71–99.

Goyal, R., Ebrahimi Kahou, S., Michalski, V., Materzynska, J.,
Westphal, S., Kim, H., . . . others (2017). The” something
something” video database for learning and evaluating vi-
sual common sense. In Proceedings of the ieee interna-
tional conference on computer vision (pp. 5842–5850).

Jang, H., & Tong, F. (2021). Convolutional neural networks
trained with a developmental sequence of blurry to clear im-
ages reveal core differences between face and object pro-
cessing. Journal of vision, 21(12), 6–6.

Jinsi, O., Henderson, M. M., & Tarr, M. J. (2023). Early ex-
perience with low-pass filtered images facilitates visual cat-
egory learning in a neural network model. Plos one, 18(1),
e0280145.

Kiorpes, L. (2016). The puzzle of visual development: be-
havior and neural limits. Journal of Neuroscience, 36(45),
11384–11393.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet
classification with deep convolutional neural networks. Ad-
vances in neural information processing systems, 25.

Lenassi, E., Likar, K., Stirn-Kranjc, B., & Brecelj, J. (2008).
Vep maturation and visual acuity in infants and preschool
children. Documenta Ophthalmologica, 117 , 111–120.

Newport, E. L. (1988). Constraints on learning and their role in
language acquisition: Studies of the acquisition of american
sign language. Language sciences, 10(1), 147–172.

Turkewitz, G., & Kenny, P. A. (1982). Limitations on input
as a basis for neural organization and perceptual develop-
ment: A preliminary theoretical statement. Developmental
Psychobiology: The Journal of the International Society for
Developmental Psychobiology , 15(4), 357–368.

Vogelsang, L., Gilad-Gutnick, S., Ehrenberg, E., Yonas, A.,
Diamond, S., Held, R., & Sinha, P. (2018). Potential down-
side of high initial visual acuity. Proceedings of the National
Academy of Sciences, 115(44), 11333–11338.

Vogelsang, M., Vogelsang, L., Gupta, P., Gandhi, T. K., Shah,
P., Swami, P., . . . Sinha, P. (2024). Impact of early visual ex-
perience on later usage of color cues. Science, 384(6698),
907–912.

Yoshihara, S., Fukiage, T., & Nishida, S. (2023). Does train-
ing with blurred images bring convolutional neural networks
closer to humans with respect to robust object recognition
and internal representations? Frontiers in Psychology , 14,
1047694.


