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Abstract
Human cognitive neuroscience has revealed that humans
are capable of flexibly learning complex functions. Large
Language Models (LLMs) are increasingly being com-
pared to humans in terms of their intelligence and be-
havioural sophistication. Here, we use a principled frame-
work to examine whether Large Language Models are
able to flexibly learn functions in-context. We find a
human-like behavioural motif, in which LLMs are better
able to learn smoother, more predictable functions with
less noise, and that their in-context learning accuracy ap-
proaches the theoretical maximum in the limit.
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Introduction
Learning to associate noisy observations of our world is a fun-
damental component of our cognitive tool box. We are able to
learn the appropriate amount of time to boil the kettle for a
perfect cup of tea and determine how long to toast bread for
optimal crispiness. Solving these types of problems requires
inferring reliable information from inherently noisy sensory and
experiential cues. Recent advances in machine learning, par-
ticularly with the rise of large language models (LLMs), have
shown that this ability to infer underlying functional relation-
ships is central not only to human cognition but also to modern
machine learning systems.

Background
Past research on rational models of function learning have
demonstrated that humans can generalize from limited, noisy
examples by inferring the underlying structure of the environ-
ment (Lucas, Griffiths, Williams, & Kalish, 2015; Tenenbaum,
Kemp, Griffiths, & Goodman, 2011). In humans, this pro-
cess of learning functions from noisy data has been effectively
modeled using Gaussian Processes (Schulz, Tenenbaum,
Reshef, Speekenbrink, & Gershman, 2015), which capture the
inherent uncertainty in sensory observations (Williams & Ras-
mussen, 2006).

Parallel to these human capabilities, recent advances in
machine learning have introduced the paradigm of in-context

learning for large language models (LLMs). In-context learn-
ing describes the ability of LLMs to improve their performance
on a given task after being provided with a number of task-
relevant demonstrations (Brown et al., 2020). This human-like
ability can make LLMs exceed traditional deep learning meth-
ods in few-shot tabular data classification (Hegselmann et al.,
2023), and even outperform human participants in reinforce-
ment learning scenarios like two-armed bandit tasks (Binz &
Schulz, 2023).

Gaussian Processes: A Principled Framework
For Function Learning

To produce a principled framework for studying function learn-
ing in LLMs, we draw on previous work in function learning
in humans (Schulz et al., 2015). Gaussian Process Regres-
sion is a method for learning functions from data by placing a
prior distribution (a Gaussian Process, GP) over the space of
functions, and then inferring the best fitting function from that
space using Bayes rule. Formally, a GP defines a probability
distribution over function space, p( f ) where f is some func-
tion, f (x), that takes some input x and returns an output y. By
defining a GP, we are able to sample functions with formally
defined properties, corresponding, for instance, to the func-
tions’ predictability. We can then use these functions as the
basis for studying function learning, and associate the proper-
ties of those functions with how quickly different systems can
learn them.

A GP is parametrised by a mean function m(x) = E[ f (x)]
and a covariance function, or kernel, k(x,x′) = E[( f (x)−
m(x))( f (x′)−m(x′))]. The mean controls the expected out-
put, y, across the distribution of functions and possible inputs
and is usually centred at 0 for convenience. The covariance
function controls the variability around this expected output
for different inputs across the space of possible functions. A
particularly flexible class of covariance functions is the Matérn
kernel, defined as:

ks(τ) =
21−ν

Γ(ν)
(

√
2ντ

γ
)νKν(

√
2ντ

γ
) (1)

where τ is the difference (or more generally, for vector in-
puts, Euclidean distance) between two input values, x and x′,
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Figure 1: LOESS smoothed learning curves for six LLMs on functions sampled from kernels with different smoothness (rows)
and with different amounts of injected Gaussian noise (columns). The theoretical learning curves are shown in black on each
plot. Results are shown from Trial 10 onwards as initial errors were very large.

ν is the smoothness parameter, γ is the length scale, Γ(·) is
the gamma function, and Kν(·) is the modified Bessel func-
tion of order ν = s− 1

2 . For any two inputs, then, the Matérn
kernel essentially encodes how variable the function is across
the intervening input space, with γ controlling the scale of that
intervening space and higher values of ν effectively increas-
ing the correlation between input values at larger distances
from each other. Formally, ν encodes the differentiability of
the functions, and indeed, in the infinite limit, produces smooth
functions in the technical sense. ν can therefore be thought of
as controlling how predictable functions sampled from the GP
are, since higher values produce functions that produce more
similar outputs for large differences in x.

A benefit of using GPs to sample functions is that we
can also describe the theoretical lower bound of the error
when learning functions from particular parametrizations of
the Matérn kernel as the volume of training data increases

(Opper & Vivarelli, 1998). For the squared error, L(y, ŷ) =
(|y− ŷ|)2, the expected error after n input points, E(n), can
be expressed as the normalized sum of the non-zero eigen-
values, λ, of the covariance function, scaled by any injected
noise, σ:

E(n)≥ σ
2

N

∑
i=1

λi

σ2 +nλi
(2)

Here, we inject noise by adding a scalar sampled from the
Gaussian: y = f (x) + ε, where ε ∼ N (0,σ2). Computing
these theoretical learning curves for the Matérn kernel allows
us to determine how close empirical learning curves from test
subjects (humans, LLMs) are to the theoretical expected mini-
mum for an optimal function learner. Of course, for cases with
0 injected noise, the minimum is 0 from the first input.

Materials & Methods
We studied function learning in the Base and Instruct versions
of three Large Language Models trained by Meta: Llama-
3.2 (1 billion parameters), Llama-3.2 (3 billion parameters),
Llama-3.1 (8 billion parameters). We prompted these models
with text with the following structure:

You are a number predictor.
I will give you a number, X, and then you need
to predict a new number, Y. There may be noise
in the true prediction.
Let’s begin...
{X: input, Y: output} X: input, Y:

Where {X: input, Y: output} is repeated 0-199 times
with different input-output pairs sampled from a function. We
sampled 20 functions each from 5 Matérn kernels with ν =
[1,1.5,2,2.5,3] respectively and γ= 1000, and injected Gaus-
sian noise with σ2 = [0,0.2,0.4]. At each trial, we compute the
absolute error between the model’s prediction and the true y.
We also computed the theoretical learning curves for the ab-
solute error by square-rooting the result of Eq. 2.

Results
Fig. 1 shows the results of six LLMs on our dataset of func-
tions. All models learn to fit the functions over 200 sam-
ples with absolute error below 2. We see that the mod-
els are ranked by size across all conditions, with the 8 bil-
lion parameter model consistently showing lower error during
learning, although these differences appear to be attenuated
by instruction-tuning. Error is higher during learning for less
smooth functions with more noise. All models approach the
theoretical learning curves by the end of training. A mixed ef-
fects model with noise and smoothness as fixed effects and



function as the random effect found increasing smoothness
significantly reduced error but that there was no significant dif-
ference for noise, at α = 0.05.

Discussion
We found that LLMs tasked with learning scalar functions can
do so robustly with 200 examples, and that their performance
is affected by how smooth the function is. This aligns with re-
sults from human experiments which show that we are better
at learning functions that are more predictable (Schulz et al.,
2015). Future work will explore whether higher noise can sig-
nificantly impact performance, why instruction-tuned models
are more similar in these tasks, and whether functions learnt
in-context are geometrically represented in model activations.
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