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Abstract
Pattern separation, essential for encoding distinct memo-
ries of overlapping contexts, relies on dentate gyrus cod-
ing shaped by entorhinal input and strong lateral inhibi-
tion. Although synaptic plasticity and adult hippocampal
neurogenesis have been implicated in this process, their
precise contributions remain unclear. The Cbln4-Neo1
complex, which mediates plasticity at entorhinal cortical
synapses in the dentate gyrus without affecting basal sig-
nal transmission, offers a unique target for investigation.
In this study, we selectively deleted Cbln4 from inputs
to the mouse dentate gyrus. We found that Cbln4 is re-
quired for behavioral pattern separation and suppresses
activity-dependent neurogenesis. We then developed a
biologically plausible computational model incorporating
an entorhinal cortex-dentate gyrus circuit in a reinforce-
ment learning framework. Simulations suggested that ei-
ther impaired synaptic plasticity or increased neuroge-
nesis alone was sufficient to disrupt behavioral pattern
separation by elevating representational similarity in the
dentate gyrus. These findings highlight the role of Cbln4
in memory encoding and dissociate the contributions of
synaptic plasticity and neurogenesis through computa-
tional modeling.
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Introduction
Pattern separation, a memory process that enables animals
to distinguish similar environments, is essential for adapt-
ing to new conditions. Imaging and behavioral studies have
shown the necessity of the dentate gyrus (DG) and its in-
puts from the entorhinal cortex (EC) in this process (Yassa
& Stark, 2011). Proposed mechanisms include EC→DG ex-
pansion and DG sparse coding via lateral inhibition. How-
ever, activity-dependent processes such as neurogenesis and
synaptic plasticity have also been implicated, though their pre-
cise roles remain unclear (Cayco-Gajic & Silver, 2019). No-
tably, conflicting evidence suggests that neurogenesis can
both enhance and impair hippocampus-dependent learning
and memory, including pattern separation (Evans et al., 2022;
Sahay et al., 2011). Here, we report that Cbln4, a protein pre-
viously identified as a mediator of EC→DG plasticity (Liakath-
Ali et al., 2022), promotes behavioral pattern separation while
suppressing activity-dependent neurogenesis. To explore the
potential contribution of synaptic plasticity and neurogenesis,
we developed a biologically plausible computational model of
the EC-DG circuit incorporating Hebbian learning and neuro-
genesis. This model provides a computational framework for
each of their distinct contributions to pattern separation.

Methods
Behavioral Experiment
Transgenic mice with conditional knockout of Cbln4 in presy-
naptic inputs to the DG were used. On day 0, mice under-

went a fear conditioning (FC) task in chamber A with foot
shocks. From day 1 to 14, they underwent pattern separa-
tion (PS) training, with daily 3-minute exposure to chambers
A and B, which differed slightly in sensory cues. Freezing be-
havior, measured as the percentage of time spent immobile,
was recorded in each chamber as an index of contextual dis-
crimination. A 2-second foot shock was delivered in chamber
A only, following the 3-minute recording period. Neurogenesis
was quantified using EdU and Dcx labeling of hippocampal
sections.

Computational Modeling and Simulation
The model, incorporating EC-DG circuit and an actor-critic
architecture (Kumar et al., 2022), was based on the neu-
ral circuit underlying contextual fear conditioning (Fig. 1A;
LeDoux, 2000; Pape & Pare, 2010). EC activity in each cham-
ber was modeled as a noisy version of two vectors drawn
from a normal distribution, with their cosine similarity con-
trolled by a similarity index (SI) (Fig. 1B). DG neurons re-
ceive feedforward input from EC and lateral inhibition from
other DG neurons, with weights updated via Hebbian rule:
∆Wik = αEC→DG(yi · xk −Wik), ∆Mi j = αlateral(yi · y j −Mi j)
(Qin et al., 2023). The ratio of lateral to feedforward learning
rates was defined as rα = αlateral

αEC→DG
. Neurogenesis in the DG

was modeled by adding new neurons to the DG layer each
day.

Results
We first examined the experimental data from the FC + PS
task. Mice with Cbln4 deletion showed impaired contextual
discriminability between chambers (Fig. 1C; p < 0.05). In
addition to the previously reported impairment of EC→DG
synaptic plasticity, we observed increased DG neurogenesis
in the Cbln4 deletion group (Edu: ∆892.67, p < 0.05; Dcx:
∆610.00, p < 0.05). In contrast, basal neurogenesis in the
home cage and after FC alone remained unaffected, suggest-
ing that only activity-dependent neurogenesis was disrupted.

Next, we evaluated the pattern separation capability of the
EC-DG network. Given overlapping EC input patterns (Fig.
1B), the model can produce low-dimensional representations
in the DG, with the first principal component (PC) capturing
most of the variance in the network dynamics (Fig. 1D).
These representations became increasingly low-dimensional
over the course of training (Fig. 1D). When EC input sim-
ilarity was reduced to counteract noise, the model progres-
sively learned to separate EC inputs by reducing DG similarity
(Fig. 1E, dark blue curves; p < 0.01). Increasing αEC→DG en-
hanced pattern separation (p < 0.001) and accelerated the re-
duction in DG similarity over time (Fig. 1F). Similarly, increas-
ing rα, reflecting a stronger sparsity cost within DG, improved
pattern separation by reducing DG representational similarity
(Fig. 1G; p < 0.001).

Finally, we used an actor-critic algorithm to associate DG
representations of environments with foot shock punishment,
generating freezing ratio as a measure of behavioral pat-
tern separation. When the number of neurons added to the



Figure 1: (A) Model architecture. Feedforward (W , red arrows) and lateral (−M, blue arrows) weights were updated via Hebbian
learning. DG→actor-critic weights (green arrows) were updated via temporal difference learning. (B) First two principal com-
ponents of a representative pair of EC input vectors. (C) Difference in freezing ratios between chambers A and B in behavioral
experiments, grouped by Cbln4 deletion (purple: control; yellow: mutant). (D) Cumulative variance explained by the first four
principal components at early (orange) and late (blue) stages of learning in models with (circles) or without (triangles) neuroge-
nesis. (E-G) Global cosine similarity of DG activity across time steps in PS-only simulations, varying (E) EC cosine similarity
(SI), (F) αEC→DG, (G) rα. (H-I) Simulated (H) DG similarity and (I) freezing ratio differences in the FC + PS task, modulated
by αEC→DG and neurogenesis. Abbreviations: EC: entorhinal cortex. DG: dentate gyrus. δ(t): temporal difference error. PC:
principal component. SI: similarity index. lg: common logarithm.

network each day was set to match biological scales, both
neurogenesis and reduced synaptic plasticity αEC→DG im-
paired pattern separation by elevating DG similarity (Fig. 1H;
αEC→DG: p < 0.001; neurogenesis: p < 0.001). Concurrently,
contextual discrimination behavior was impaired, as indicated
by a decreased difference in the freezing ratio between cham-
bers A and B (Fig. 1I; αEC→DG: p < 0.001; neurogenesis:
p < 0.001). Compared with the model without neurogene-
sis, the neurogenic model required more PCs to represent EC
inputs, further indicating interference with pattern separation
(Fig. 1D).

Discussion

Based on our experimental results, we identified Cbln4 as a
significant regulator of pattern separation and a suppressor of
activity-dependent hippocampal neurogenesis. To help further
dissect the underlying mechanisms, we developed a biologi-
cally plausible model incorporating EC→DG synaptic plastic-
ity, lateral inhibition, and DG neurogenesis, which not only re-
produces key aspects of pattern separation but also extends
beyond existing theories centered on EC→DG expansion and
sparse coding via inhibition. Both the experimental deletion
of Cbln4 and model-based impairment of EC→DG plasticity
or DG neurogenesis led to deficits in pattern separation, high-
lighting their potentially individually sufficient and converging
contributions.

Previous studies have suggested a causal relationship be-
tween dopamine signals and fear conditioning (Fadok, Dick-
erson, & Palmiter, 2009; Tsai et al., 2009). While the amyg-
dala’s role in reinforcement learning (RL) is well recognized,
its neurocomputational basis in associative memory remains
underexplored (Niv, 2009). By implementing the actor-critic
algorithm, we propose a potential computational model for RL
in the amygdala. However, further research is required to val-
idate and refine their connection.
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