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Abstract
Recent neural encoding studies have attempted to com-
pare the human brain speech perception network with ar-
tificial neural network models trained end-to-end (e2e) on
automatic speech recognition (ASR), aiming to reveal the
temporal dynamics of human speech processing. Mul-
tiple studies have reported a prominent correspondence
between e2e ASR models and human brains in terms of
the hierarchical encoding of linguistic features, from low-
level acoustic features to high-level semantic features.
While different types of e2e ASR models have been used
to investigate this correspondence, there has not been
a consensus on the most suitable ASR model type for
such investigations. This extended abstract will discuss
concerns regarding the use of three mainstream types of
e2e ASR models when evaluating their hierarchical corre-
lation with human speech perception network, including
the recurrent neural network transducer, the attention-
based encoder-decoder model using tokenizer (i.e. Whis-
per) and the self-supervised transformer model. We sug-
gest that further caution is required when using these
models in the hierarchical correlation studies, due to is-
sues such as varying decoding latency, mismatched con-
text window and difficulty in representation disentangle-
ment inherent in each model type, respectively.
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Introduction
Recently developed automatic speech recognition (ASR)
models based on artificial neural networks (ANN) and the
back-propagation algorithm have achieved human parity for
a few languages (Xiong et al., 2016). Such models could po-
tentially serve as computational models for speech percep-
tion, considering that their computational weights are accessi-
ble for analyzing and manipulating. Studies (Li et al., 2023;
Keshishian et al., 2025) have compared the neural activity
in the speech processing pathway of human listeners with
the layer representations of deep neural network (DNN) ASR
models, and reported that the hierarchical information in ASR
models prominently correlates with that in the ascending audi-
tory pathway (Li et al., 2023). Keshishian et al. (2025) further
reported that the temporal order of hierarchical encoding in an
ASR model is similar to that in human brains.

Neural encoding studies have consistently chosen end-to-
end (e2e) DNN ASR models for comparisons with human
brains. This preference is likely due to the more unified inter-
nal structure of e2e systems than conventional modular sys-

tems, which better resembles the consistent biological struc-
ture of the human cortex. The major types of modern e2e ASR
models under investigation (Li et al., 2023; Keshishian et al.,
2025) include recurrent neural network transducer (RNN-T)
models (Graves, 2012), and attention-based self-supervised
(SSL) pre-trained model (Baevski, Zhou, Mohamed, & Auli,
2020; Hsu et al., 2021), etc. Additionally, other state-of-the-art
e2e ASR model types, such as the attention-based encoder-
decoder (AED) model (Dong, Xu, & Xu, 2018; Radford et al.,
2023) hold potential for future investigation.

This paper connects with previous studies (Mahadeokar et
al., 2021; Wagner, Thallinger, & Zusag, 2024; Pasad, Shi,
& Livescu, 2023) that analyzed the characteristics of main-
stream e2e ASR models. Our aim is to identify concerns in
evaluating the hierarchical correlations between the human
brain regions and e2e ASR model layers. Drawing attention to
these concerns helps refine the modeling of encoding latency
in such evaluations, particularly regarding context window es-
timation for both ASR representations and brain activities. We
will discuss three specific concerns in such evaluations, each
corresponding to a type of e2e ASR model.
• Noticeable and varying time lags in the prediction branch

(i.e. decoder layer) of the RNN-T model (Mahadeokar et
al., 2021), could lead to difficulties in modeling the speech
and language neural encoding time lags in brains if using
such representations as a reference;

• Unsupervised tokenization in supervised AED models:
Models like Whisper (Radford et al., 2023), which use un-
supervised tokenizers (Sennrich, Haddow, & Birch, 2015),
generate tokens that can be temporally misaligned with fun-
damental human speech units (such as phonemes, sylla-
bles, or words) (Wagner et al., 2024). This misalignment
can lead to significant inaccuracies in context window seg-
mentation during correlation evaluations.

• Gradual evolving of encoding acoustic, phonetic, and word-
level properties (Pasad et al., 2023) in representations of
SSL model layers (Baevski et al., 2020; Hsu et al., 2021).
This presents a challenge when deciding which SSL layer’s
representation is most appropriate for modeling specific au-
ditory cortex brain region.

Concern case one: RNN-T
Keshishian et al. (2025) used a smart way to evaluate how the
RNN-T ASR model maps to the human speech processing
pathway, by fitting a single-lag regression model that predicts
the brain neural activity from the layer activations in response
to speech stimuli. Such regression models used a constant
value to model the time lag of neural responses and that of
ASR activations for each electrode and layer pair.



However, such an assumption on a relatively static time
lag might not be valid for both the brain speech processing
and the RNN-T model. The latency of speech neural encod-
ing highly depends on the semantic contents and linguistic
properties of the stimuli (Ding, Melloni, Zhang, Tian, & Poep-
pel, 2016; Yasmin, Irsik, Johnsrude, & Herrmann, 2023). The
RNN-T models have shown that its time lag in the prediction
branch (i.e. decoder), reflected by token (spoken word) emis-
sion delay, can be a large and varying duration compared to
the length of the spoken word itself (Mahadeokar et al., 2021).
Therefore, a regression model with more dynamic modeling
on speech processing latency could be applied in the correla-
tion evaluations.

Meanwhile, the RNN-T’s architecture, whilst monotonic, al-
lows the model to delay its output, pending future acoustic or
lexical context to be processed before the incoming next out-
put token predicted. The long token emission delay of RNN-T
breaks the causal relationship in speech modeling. Conse-
quently, the context window influencing the RNN-T decoder
representation for a specific token (i.e. spoken word) might
not be centered at the corresponding word center. When com-
paring RNN-T representations to the neural activity, the time
window to select highly-correlated neural activity may require
including future context.

On the other hand, Keshishian et al. (2025) chose RNN-
T to map to the human speech perception network because
they believed that RNN-T processes speech in a causal and
incremental manner. Given that the RNN-T causality might
have been broken, future works may as well experiment on
variations of RNN-T that have restrictions on time alignment
and token emission delays (Mahadeokar et al., 2021).

Concern case two: ASR model using tokenizer
Li et al. (2023) explored cross-lingual hierarchical correlation
evaluation on English and Chinese. If further studies aiming to
investigate lower-resource languages using pre-trained ASR
models that achieve human-level performance, the options
become narrower. Whisper (Radford et al., 2023), a noise-
robust speech processing model, is fully-supervised trained
on 680,000 hours of multilingual speech, incorporating super-
vision on the transcription and translation tasks. This makes it
a potentially convenient tool for correlation studies. However,
the tokenizer and training objective used by Whisper may in-
troduce a consistent delay in context window that corresponds
to each representation frame, particularly in its decoder.

Whisper used Byte pair encoding (BPE) text tokenizers
(Sennrich et al., 2015) during both training and inference,
trained in an unsupervised manner on the transcription texts.
Wagner et al. (2024) found that many tokens learned by BPE
are prefixed with a space, and only about 13% of spaces are
separated from the following tokens. This results in the token-
level context window advancing ahead of the corresponding
phoneme or word-level context window. Additionally, Whisper
does not provide word-level timestamps. Determining the con-
text window of high-level linguistic representations requires
one of two ways. First, applying an additional force-alignment

step to obtain the start and end time stamp of each spoken
unit (phone or word). Second, inferring alignment from the
cross-attention weights using Dynamic Time Warping (DTW)
(Giorgino, 2009), which maps the context window of decoder
representations back to the encoder representations that are
more tightly aligned with the speech signal.

Using the first approach may lead to the pitfall of equating
the phoneme or word time window with the ASR representa-
tion time window, without accounting for silence. Setting the
start and end time with considerations on the space in the
token and including the silence duration accordingly could re-
duce misalignment in evaluation. When comparing different
ASR models in correlation studies, one potential solution is
to use CrisperWhisper (Wagner et al., 2024), an extension
of Whisper that is further trained on retokenized annotations
where spaces are separated from word tokens, keeping the
context window more closely with those of other ASR models.

Concern case three: SSL models
Li et al. (2023) modeled neural activities in the human au-
ditory pathway with two SSL models, Wav2Vec 2 (Baevski
et al., 2020) and HuBERT (Hsu et al., 2021), also by fitting
ridge regression models to predict neural activity from differ-
ent brain regions. By comparing normalized regression coeffi-
cients, they reported the SSL model hierarchy correlates with
the ascending auditory pathway and selected the best layer
predicting the neural activities in each pathway component.

However, according to the SSL representations analysis
(Pasad et al., 2023) involving Wav2Vec 2 and HuBERT, the
linguistic properties encoded in SSL models evolve very grad-
ually through layers, reflected by plateau shapes in the layer-
level canonical correlation analysis similarity (Hotelling, 1992)
curves comparing the representations to the local spectro-
gram feature, the phone labels, and the word labels. This
reduces the precision of using single-layer representations as
a reference to dissect the functions of different brain regions.
Such a challenge has been reflected in the analysis of in-
tracranial cortical recordings from cortex components in the
speech processing pathway (Li et al., 2023). Taking HuBERT
as an example, 13 out of 14 layers were not statistically differ-
ent in brain-prediction score from the best layer predicting the
Heschl gyrus (HG) activities, 8 out of 14 for the superior tem-
poral gyrus (STG). SSL representations that are more mod-
ularized and capable of separately encoding hierarchical lin-
guistic representations may need to be developed to refine
this kind of speech processing neural activity modeling.

Conclusion
We identified three concerns when examining the hierarchical
correspondence between e2e ASR models and human brain
activity: (1) the varying emission lag that disrupts strict causal-
ity in RNN-T, (2) the context window mismatch in models us-
ing token-level targets such as Whisper, and (3) the gradual
layer-level evolution of representations in SSL models. Care-
ful attention to time alignment, token segmentation, and SSL
model representations may enhance the reliability of correla-
tion studies.
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