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Abstract 

The neural response to words is modulated by the 

amount of information conveyed by the words. For 

example, it is well established that neural activity 

monotonically increases as a function of the surprisal 

of a word. Another important information-theoretic 

measure, entropy reduction (ER), quantifies how each 

incoming word constrains subsequent  content 

interpretations. Here we examined whether and when 

surprisal and ER modulated neural activity during 

naturalistic speech comprehension. Through 

magnetoencephalographic recordings (MEG) of 

naturalistic Mandarin comprehension, we 

demonstrate that ER accounts for neural responses 

that cannot be explained by surprisal alone. Initial 

observations show that ER elicits a later (400-600 ms) 

cortical response compared to the N400 surprisal 

effect. These preliminary results suggest that ER may 

involve neural computations distinct from those 

underlying surprisal, with early resolution of surprisal 

followed by later ER. Our findings extend predictive 

processing frameworks to tonal languages and 

highlight entropy reduction as a key component of 

neural language models, operating beyond surprisal. 
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Introduction 

Language comprehension requires the brain to 

continuously update its expectations as new words arrive. 

While surprisal (the extent to which a word came 

unexpected to reader or listener) robustly modulates 

neural responses (Kutas & Hillyard, 1980), the role of 

entropy reduction (the change in uncertainty about future 

words, ER) is less clear (Frank et al., 2015). These 

measures are mathematically related but computationally 

distinct: surprisal depends on a word's contextual 

probability, while entropy reduction quantifies how much 

that word constrains subsequent predictions (Hale, 2003, 

2006). 

Behavioral studies consistently show that ER 

affects reading times independently of surprisal (Frank, 

2013; Lowder et al., 2018), yet neurophysiological 

evidence for this dissociability is mixed: neuroimaging 

results show ER’s unique contribution to a widespread 

brain activation (Song et al., 2024), and 

electrophysiological studies in reading tasks report either 

grammar-based P600-like central effect (Hale et al., 2018) 

or null results (Frank et al., 2015). These discrepancies 

may reflect methodological differences in how ER is 

quantified. Grammar-based approaches capture 

structural uncertainty (Hale, 2006), whereas word-based 

methods reflect meaning-level expectations based on 

only small text samples (Frank, 2013).  

Our study aims to resolve these challenges by 

examining naturalistic Mandarin comprehension with 

MEG. We quantified surprisal and ER using contextually-

sensitive measures derived from Chinese GPT-2 while 

employing temporal response functions (TRFs) (Di 

Liberto et al., 2015) to isolate word-level neural responses. 

This approach allowed us to determine whether: (1) the 

well-established surprisal effects generalize to 

Mandarin’s linguistic structure, (2) ER generates 

responses independently from surprisal and elicits distinct 

spatiotemporal dynamics. 

Methods 

Procedure. Thirty-four native Mandarin speakers with 

normal hearing were recruited for the study. Participants 

listened to a 50-minute Chinese audiobook while their 

brain activity was recorded using MEG. 

 

Analysis. We employed a hierarchical approach to model 

how neural responses encode different linguistic features. 

Our baseline model incorporated control regressors for 

acoustic features (broadband amplitude envelope, 

spectrogram, acoustic edge, pitch) and lexical properties 

(phoneme, character and word onsets, lexical frequency). 

For each character in the narrative, we computed two key 

metrics using Chinese GPT-2: surprisal, calculated as -

log p(character|context) to quantify prediction error, and 

entropy reduction (ER), computed over three-character 

lookahead sequences (Frank, 2013) (see Figure 1A ). 

Surprisal and entropy reduction showed minimal 

correlation (r = -0.06), enabling independent examination 

of their neural contributions.  

We employed time-resolved TRF analysis to 

model linguistic features as impulse functions aligned to 

character onsets. The performance of the TRF models 

with different feature combinations was evaluated through 

cross-validation, quantified by the Pearson correlation 



between modeled and recorded MEG response (Figure 

1B).   

 

Figure 1. Schematic illustrations for entropy 

reduction and TRF. (A) Entropy reduction calculation 

using GPT-2. The model generates predicted characters 

(blue circles with probabilities) given preceding context. 

These predictions update the context to forecast 

subsequent characters (gray circles). The target 

character (red circle) is then observed, and the process 

repeats for subsequent characters (orange circles). 

Sequence probabilities are computed by multiplying 

constituent character probabilities (illustrated for 2-

character sequences). Entropy reduction equals the 

difference between the entropy of future character 

sequences before (blue distribution) and after (orange 

distribution) observing the target character. (B) Linguistic 

features (one as example) were modeled as time-shifted 

impulses (top) to predict neural responses (bottom) via 

linear regression. Resulting TRF weights (middle) reflect 

the time course of neural response to each feature.  

Results 

Dissociable neural signatures for surprisal and 

entropy reduction. The baseline model explained 

significant variance in neural responses (p<0.001 

comparing to zero), establishing a robust foundation for 

testing predictive mechanisms. Adding lexical surprisal 

alone significantly improved model fit (p<0.001. Cohen’s 

d = 2.04), with TRF weights peaking between 200-400 ms 

post-character (Figure 2B). This deflection, maximal over 

temporal lobe sensors, corresponds to the canonical 

N400 prediction error effect observed across languages 

(Kutas & Hillyard, 1980; Wilcox et al., 2023).  

The inclusion of ER on top of the surprisal further 

enhanced the model fit to the neural response (p = 0.001, 

d = 0.63, Figure 2A). Initial observations revealed that 

although ER-related activity shared a large overlap with 

that of the surprisal, it emerged later (400-600 ms) 

compared to the earlier N400 surprisal effect (Figure 2B-

C). Note that although these temporal differences align 

with theoretical accounts of distinct predictive 

mechanisms, they require formal statistical verification.  

Our study temporally dissociates the neural 

correlates of surprisal and entropy reduction, two 

important information-theoretic measures in language 

processing. The two temporal signatures suggest that the 

brain engages in sequential operations: first resolving 

immediate prediction conflicts, then updating future 

expectations. 

 

Figure 2. Distinct neural responses to surprisal and 

entropy reduction (A) Model performance of different 

models, model with ER and surprisal has the highest 

model performance, and adding ER, surprisal on top of 

each other also significantly improved model performance. 

(B) TRFs show earlier peak for surprisal (200-400 ms, red) 

vs later ER responses (400-600 ms, blue). (C) 

Topography of ER and surprisal. 
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