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Abstract
Current chatbots excel at demonstrating cognitive empa-
thy through language analysis but they lack mechanisms
to internalize emotional intensity, a hallmark of human af-
fective empathy mediated by neural substrates like the
anterior cingulate cortex (ACC). We propose a framework
inspired by ACC-mediated “Artificial Pain” encoding, in-
tegrating emotion classification with intensity regression.
Using the Emotional Support Conversations (ESConv)
dataset, we carry out transfer learning using MentalBERT,
MentalRoBERTa, and ModernBERT in a multi-task setup
that jointly models emotion categories and correspond-
ing intensity levels on a 1–5 scale. We then evaluate these
models to assess their capacity for emotion understand-
ing and graded affective representation. MentalRoBERTa
achieves state-of-the-art performance in single-task clas-
sification (F1=0.59) and multi-task settings (F1=0.63), with
intensity regression showing significant correlations to
the human-annotated ground-truth, but with relatively
high estimation error. While multi-task learning improves
emotion classification through shared intensity signals,
predicting the intensity of emotions remains challeng-
ing, highlighting the need for model training with larger
datasets. This work establishes a benchmark for emotion
intensity-aware affective AI, bridging natural language
processing methods with neuroscientific principles. Fu-
ture implications include the advancement of affective
empathy in human-agent interactions.
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Introduction
Empathy, the understanding and sharing others’ emotions,
promotes altruism and creative reasoning in humans (Kri-
pal & Reiter-Palmon, 2024); in AI conversational agents, it
enhances user satisfaction, trust, and collaboration efficacy
across healthcare (Jiang, Huang, Xu, & and, 2025), emo-
tional support (Birmingham, Perez, & Matarić, 2022), and phi-
lanthropy (Park, Yim, Chung, & Lee, 2023). According to
the Psychological framework by Decety and Jackson (2004),
cognitive empathy is the logical inference of emotions. This
is different from affective empathy, which arises from neu-
robiological substrates like the mirror neuron system (MNS)
and the anterior cingulate cortex (ACC) to internalize others’
emotions (Lamm, Decety, & Singer, 2011). The MNS is re-
sponsible for emotional mirroring for genuine resonance (Wu,
Cheng, Liang, Lee, & Yen, 2023). The ACC mediates shared
pain perception. Specifically, its dorsal region focuses on the
processing and encoding of negative emotions and their in-
tensity (Ma, 2022; Xiao & Zhang, 2018).

Current AI chatbots excel at cognitive empathy but lack
mechanisms to encode emotional intensity, relying on rule-
based or probabilistic frameworks instead (Sorin et al., 2024).
Existing attempts of affective empathy implementations re-
main limited to external simulation, hindering sustained empa-
thy in dynamic interactions (Sorin et al., 2024). We propose an
approach to emulate ACC-mediated “Artificial Pain” encoding
via language (Feng, Zeng, & Lu, 2022). Our model builds to-
wards emotional mirroring by outputting the detected emotion
with intensity, emulating the sensing of other’s emotional pain
in the same way that the ACC does. We thus ask: Can we
encode an internal state of emotional feeling–with intensity–
through representational learning to generate “Artificial Pain”
as a foundational step toward affective empathy?

Our contributions are: (i) A neuroscientifically inspired
framework for emotion classification with intensity encoding,
emulating affective empathy via “Artificial Pain”; (ii) A bench-
mark evaluating language models’ ability to encode emotions
and intensities in an emotional support dialogue dataset. Our
code is openly available1.

Methodology
Datasets
We used the Stress-Annotated Dataset (SAD) (Mauriello et
al., 2021), with 6,270 SMS-like sentences categorized by
nine stressors, and the Emotional Support Conversation (ES-
Conv) (Liu et al., 2021), with 1,031 dialogues annotated for
seven emotion categories. ESConv includes emotion intensity
scores (1–5; higher is more intense) at each dialogue’s start
and end. For SAD texts were used as-is; for ESConv help-
seeker utterances were concatenated as a single string s.

Pre-trained Backbones Used
We experimented with MentalBERT and MentalRoBERTa (Ji
et al., 2022)—pre-trained on 13.7M mental health subreddit
sentences—and ModernBERT (Warner et al., 2024).

Model Architecture
Input s is tokenized (adding a classification token [CLS]),
forming X ∈ Rn×d (sequence length n, embedding dimension
d). Backbones encode X to embeddings H ∈ Rn×d . The
first embedding corresponds to the CLS token. This CLS to-
ken is passed to four different MLPs, effectively carrying out
Multi-Task transfer learning. Each of the four MLPs carries
out a task: (1) emotion/stress classification, (2) initial inten-
sity regression, (3) final intensity regression, and (4) intensity
change regression. Each MLP has a Tanh-activated hidden
layer and outputs a c-demensional vertor (9 for SAD, 7 for ES-
Conv).

1ArtificialPain.github.io
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Model F1 Recall
MentalRoBERTa-base 0.6508 0.6579
MentalBERT-base 0.6351 0.6441
ModernBERT-base 0.6412 0.6426
ZeroR (Baseline) 0.0371 0.1459

Table 1: Reproduction of results by (Ji et al., 2022) on the
SAD dataset (Mauriello et al., 2021). Different rows show the
performance by different backbones on the same task. The
best performing model is highlighted in bold.

Model F1 Recall
MentalRoBERTa-base 0.5881 0.6163
MentalBERT-base 0.5033 0.5465
ModernBERT-base 0.5075 0.5426
ZeroR (Baseline) 0.1188 0.2752

Table 2: Models from Table 1 trained & evaluated on ESConv.

Training Procedure
Data was split 70:10:20 (train/val/test). The language encoder
is fine-tuned while training MLP heads. We used the Adam
optimizer with combined loss: cross-entropy for classification
and MSE for regression (learning rate: 1× 10−5, batch size:
6). Early stopping (patience=50) was applied. Metrics in-
cluded weighted F1/Recall and micro-averaged MSE.

Results2

SAD Stressor Classification
Table 1 confirms our replication of Ji et al. (2022), with
MentalRoBERTa-base achieving top performance on the orig-
inal SAD dataset (Mauriello et al., 2021) (Micro F1: 0.65).

ESConv Emotion Classification
Table 2 shows results when we applied the same training from
Ji et al. (2022), but on ESConv, demonstrating again Mental-
RoBERTa’s superior performance (Micro F1: 0.59).

Multitask models outperform classification-only models on
ESConv. Table 3 demonstrates that MentalRoBERTa-base
achieves superior classification performance on ESConv (Mi-
cro F1: 0.63). This improvement is likely due to signal enrich-
ment between tasks, a well-known benefit of multi-task learn-
ing approaches (Girdhar et al., 2022; Labeed & Liang, 2024;
Saha, Patra, Saha, & Bhattacharyya, 2020).

Multi-Task Learning: Emotion & Intensity Estimation
Figure 1 shows an analysis of the regression error for initial
and final intensities on the multitask MentalRoBERTa model.
Violin plots showing the predicted intensities for each true in-
tensity value are shown. Fitting a linear regression reveals
a positive and significant trend (p < 0.001) between ground
truth and predictions, suggesting that the model can associate
input text with emotion intensities. However, predictions for
initial intensity are overall higher than those for final intensity,
revealing the model’s bias to reflect the overall differences in
distribution between the initial and final intensities, as reflected
in the training data.

2ArtificialPain.github.io contains supplemental results for
experiments performed on training datasets with balanced labels

Model Intensity MSE
F1 Recall Initial Final Change

MentalRoBERTa 0.6279 0.6318 1.4290 1.0760 1.0700
MentalBERT 0.5745 0.5775 1.6874 1.4091 1.3838
ModernBERT 0.5112 0.5116 1.3074 1.0467 1.0771
ZeroR (Baseline) 0.1188 0.2752 0.7606 0.8265 0.9485

Table 3: Same benchmark shown in Table 2, but on the multi-
task setting with intensity regressors on ESConv in addition to
classification. The best metrics are highlighted in bold.

Figure 1: Violin plots showing the distribution of the model’s
predictions per ground truth emotion intensity level in ES-
Conv. Medians (white dots) and inter-quartile ranges (wider
gray lines) are shown. Regression lines for predicted initial
(r = 0.23, p < 0.001) and final (r = 0.27, p < 0.0001) emo-
tion intensity estimations show a significant positive trend.

The multi-task learning approach leads to improvements in
classification, but there is substantial room for improvement in
emotion intensity estimation. Accurately predicting initial/final
intensities and their dynamic shifts remains challenging given
dataset limitations with our proposed modeling approach.

Baseline
We assessed a zero-rule (ZeroR) baseline. For classifica-
tion, ZeroR predicts the majority class from the training data.
For the initial, final, and emotion intensity change regression
tasks, it predicts the mean of the respective training targets.

Conclusion
Empathy in AI systems must transcend cognitive reasoning
based on text to instead achieve affective resonance with a
user’s emotional state. In this study we proposed a multi-task
learning approach to recognize emotions while also estimat-
ing their intensity. This is a first step toward the internalization
of a user’s emotional experience, emulating a codification of
“Artificial Pain” inspired by function of the ACC.

Experiments on the ESConv dataset reveal that Mental-
RoBERTa achieves superior classification performance inde-
pendent of whether it is trained on one task or multiple tasks,
outperforming MentalBERT and ModernBERT. We also found
that these models encode useful representations to estimate
emotion intensity that correlates with ground truth. However,
the error could be improved via larger-scale datasets.

By bridging language modeling methods with insights from
affective neuroscience, this work advances toward AI systems
capable of sustained, context-aware empathy where agents
have an authentic internalization of the user’s emotions.

ArtificialPain.github.io
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