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Abstract 27 

Despite their key impact on clinical outcomes, 28 
negative symptoms in schizophrenia remain 29 
poorly understood. We designed a functional 30 
Magnetic Resonance Imaging (fMRI) study to test 31 
a mechanistic hypothesis of negative symptoms, 32 
based on the Bayesian inference and predictive 33 
coding framework. We thus designed tasks and 34 
chose models that capture this inference 35 
process, i.e. a social-affective prediction task 36 
and a control task that can be fit with Bayesian 37 
generative models. Here we present preliminary 38 
data of a first pilot study testing whether we can 39 
extract prediction error (PE) learning quantities 40 
that are uniquely social-affective. This is a 41 
crucial component of the upcoming fMRI study. 42 
Our preliminary results indicate that the two 43 

tasks in conjunction with the models may 44 
capture learning quantities that are unique to the 45 
social-affective task as well as quantities that 46 
capture general specific PE-learning. Given the 47 
preliminary nature of the study, results may 48 
change. 49 
 50 

Keywords: computational psychiatry; negative 51 
symptoms; constricted affect; blunted affect; 52 
prediction errors; Bayesian inference 53 

Introduction 54 

While neuroimaging and computational 55 
mechanistic investigations have improved our 56 
understanding of positive symptoms (e.g. Adams et al., 57 
2013; Corlett et al., 2016; Murray et al., 2008; Powers, 58 
Kelley, et al., 2017; Powers, Mathys, et al., 2017), 59 
negative symptoms remain poorly understood. A recent 60 



proposed mechanistic hypothesis about how negative 61 
symptoms, and affective blunting specifically, may arise 62 
and persist suggests that altered learning about other 63 
people’s affective reactions to their own affect may lead 64 
to blunted affect (Jeganathan & Breakspear, 2021). For 65 
instance, some individuals may perceive that their smiles 66 
are not met by others smiling back resulting in socio-67 
affective PEs (saPEs) leading to a maladaptive 68 
(subconscious) strategy of avoiding saPEs by blunting 69 
their affect. We designed an fMRI study that tests these 70 
mechanistic hypotheses with patients with psychosis and 71 
individuals from the general population who score on 72 
different ends of the constricted affect score of the 73 
Schizotypal Personality Questionnaire (SPQ; (Raine, 74 
1991)).  75 

For this study we designed two trial-by-trial PE-76 
learning tasks: (1) The SAP (Social Affective Prediction) 77 
task operationalizes saPE-learning and (2) the SAPC 78 
(Social Affective Prediction Control) task captures PE-79 
learning in a different context. 80 

In a first pilot study we test whether saPE learning 81 
in the SAP task is distinguishable from non-social and 82 
non-affective PE learning. This is crucial to show specific 83 
saPE signatures in the brain in our upcoming fMRI study. 84 

Methods 85 

In the main task of interest (SAP task), 86 
participants predict whether they will receive a smile from 87 
three different faces with different inherent probabilities of 88 
smiling (p=0.9, p=0.6, or p=0.2 respectively) on 120 trials. 89 
Participants are instructed that some of the faces are 90 
more likely to smile back than others. They indicate their 91 
prediction with a button press followed by them actively 92 
smiling at the face or staying neutral. The outcomes 93 
(whether a face smiles or not) are predetermined and the 94 
same for all participants. The control task (SAPC) uses 95 
the same predetermined outcome sequence, but instead 96 
of predicting smiles participants predict whether an egg 97 
will spoil or not.  98 

The predetermined outcome sequence of both 99 
tasks was optimized regarding parameter recoverability 100 
based on simulations with a generative model that 101 
captures trial-by-trial PE learning, the extended binary 102 
Hierarchical Gaussian Filter (eHGF; C. Mathys, 2011; C. 103 
D. Mathys et al., 2014). The eHGF captures how 104 
uncertainty influences perception and hierarchical PE 105 
updating according to predictive coding principles. 106 

In order to test for the effect of task on PE 107 
learning, we are running an ongoing small behavioural 108 
pilot study (N=5 to date). Pilots played both tasks in 109 
counterbalanced order and their responses were inverted 110 
with a binary 2-Level (eHGF2) and a binary 3-Level eHGF 111 
(eHGF3) model. We extracted Maximum A-Posteriori 112 
(MAP) estimates of the following parameters: 𝜔!,#$%&!, 113 
𝜔!,#$%&', 𝜔',#$%&'. 114 

 115 

 116 

Results 117 

We conducted Bayesian paired samples t-tests in 118 
JASP (JASP, 2023) for each one of the predefined 119 



parameter estimates. For both eHGF variations we 120 
found more evidence for there being a difference 121 
between learning captured by the 2nd-level learning 122 
rate (𝜔!). For the other parameter (𝜔',#$%&') we 123 
found evidence for the absence of an effect of task 124 
(see Figure 1 for eHGF results). 125 
 126 

Discussion 127 

Given the small preliminary sample size, all 128 
of the reported Bayes Factors only provide anecdotal 129 
evidence for both hypotheses. Additional data (data 130 
collection is ongoing) is needed to identify the 131 
parameters that can differentiate learning in the 132 
different tasks and parameters that may capture 133 
similarities.  134 

If, with more data, the evidence will 135 
accumulate in favour of the here identified effects, we 136 
could show that learning with the eHGF can 137 
distinguish between learning in the two tasks. More 138 
specifically, 𝜔!, the weight of the precision of the 139 
sensory input on the 2nd level is different on 140 
depending whether participants learn by weighing 141 
sensory input (or bottom-up information) differently in 142 
a social vs. as non-social context.  143 

If the evidence for the absence of a task 144 
difference should also accumulate with more data 145 
points for parameter 𝜔',#$%&', we would be able to 146 
show that the meta-volatility (the perception of 147 
participants about how fast the environment is 148 
changing) may be governed more by the stimulus-149 
outcome sequence vs. to the content of the task. This 150 
may thus be a more general marker for PE-learning 151 
under uncertainty. 152 

For our upcoming main fMRI study, these 153 
potential results suggest that we would be able to 154 
identify differences in learning that may be specific to 155 
social-emotional processes in individuals with highly 156 
constricted affect vs. individuals with no constricted 157 
affect. We will thus be able to directly test the 158 
hypotheses stated in a recent paper by (Jeganathan 159 
& Breakspear, 2021) and identify neural correlates of 160 
saPEs. 161 

 162 
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