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Abstract
Centered kernel alignment (CKA) and representational
similarity analysis (RSA) of dissimilarity matrices are two
popular methods for comparing neural systems in terms
of representational geometry. Although they follow a con-
ceptually similar approach, typical implementations of
CKA and RSA tend to result in numerically different out-
comes. Here, we show that these approaches become
equivalent after incorporating a mean-centering step into
RSA. This equivalence holds for both linear and nonlinear
variants of these methods. By unifying these measures,
this paper hopes to simplify a complex and fragmented
literature on this subject.
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Introduction
Quantifying similarity in neural representations (i.e. high-
dimensional activation patterns) is a central interest of the
cognitive computational neuroscience community (Barrett et
al., 2019; Schrimpf et al., 2018). However, the methodologies
used to quantify representational similarity are complex and
diverse. For example, Klabunde et al. (2023) catalogued over
thirty methods for quantifying similarity. It is difficult for practi-
tioners to choose among this large menu of options, many of
which give different numerical outputs (Soni et al., 2024).

It is important for the community to recognize cases where
superficially distinct methods are, in fact, mathematically iden-
tical. For example, Harvey et al. (2024) showed that Pro-
crustes shape distance scores (Ding et al., 2021; Williams
et al., 2021) are, after a simple transformation, equivalent
to Bures similarity scores (Tang et al., 2020). Here, we de-
rive a similar result for Representational Similarity Analysis
(RSA; Kriegeskorte et al., 2008) and Centered Kernel Align-
ment (CKA; Cortes et al., 2012; Kornblith et al., 2019).

RSA is a mainstay of the cognitive computational neuro-
science community that is rooted in work from psychology
(Shepard & Chipman, 1970) and philosophy (Churchland,
1986). CKA is a more recent method developed in the deep
learning community, which is also massively popular (>1600
citations at the time of writing). Many perceive RSA and CKA
to be distinct methods because they are used by different re-
search communities with limited cross-citation. Further, most
implementations of RSA compare representational distance
matrices (RDMs), while CKA involves comparing kernel ma-
trices. Here, we will show that these differences are mostly
superficial. Please note that an earlier version of this abstract
appeared at a NeurIPS workshop in 2024.

Results
Assume that we are given two sets of neural responses
from networks X and Y across M stimulus conditions. Let
x1, . . . ,xM ∈ RNX denote the responses from system X and
let y1, . . . ,yM ∈ RNY denote the responses from system Y .

In RSA, we often use a distance function d to compute and
compare RDMs. Let DX

i j = d(xi,x j) denote the RDM from sys-
tem X and let DY

i j = d(yi,y j) denote the RDM from system Y .
A popular choice of distance function is the squared Euclidean
distance, d(x,x′) = ∥x− x′∥2

2 = (x− x′)⊤(x− x′).
In CKA, we use a positive definite kernel function k to com-

pute and compare kernel matrices. Let KX
i j = k(xi,x j) denote

the kernel matrix from system X and let KY
i j = k(yi,y j) denote

the kernel matrix from system Y . Most commonly, practition-
ers use a linear kernel, k(x,x′) = x⊤x′.

A similarity score between system X and system Y can be
obtained by correlating the either RDMs or kernel matrices. A
popular choice is the cosine similarity, written as:

S(A,B) =
Tr[AB]

∥A∥F∥B∥F
=

vec(A)⊤vec(B)
∥vec(A)∥2∥vec(B)∥2

(1)

for any two matrices A and B with appropriate dimensions.
Some versions of RSA use other similarity functions, such as
Spearman’s rank correlation. These variants are difficult to
mathematically analyze and we will not discuss them here.

Typical implementations of RSA compute the similarity be-
tween system X and system Y as S(DX ,DY ). In CKA, the
similarity score is computed as S(CKXC,CKYC) where C is
a centering matrix, C = I − 1

M 11⊤. The matrices CKXC and
CKYC are called centered kernel matrices, because matrix
multiplying by C from the left and right has the effect of con-
straining the rows and columns to sum to zero.

In summary, typical implementations of RSA and CKA dif-
fer in two key respects. First, RSA uses RDMs while CKA
uses kernel matrices. Second, RSA compares the raw RDMs
while CKA compares the matrices after a centering operation.
The punchline of this work is that the first difference is en-
tirely superficial, and the two methods become equivalent if
the centering operation is incorporated into RSA.

Main Proposition. Let k be a positive definite kernel function
associated with kernel matrices:

KX
i j = k(xi,x j) and KY

i j = k(yi,y j) (2)

Further, let DX and DY be RDMs defined as:

DX
i j = KX

ii +KX
j j −2KX

i j and DY
i j = KY

ii +KY
j j −2KY

i j (3)



Then, the centered cosine similarity scores between these
matrices agree:

S(CDXC,CDYC) = S(CKXC,CKYC) (4)

This result can be proven by simple algebraic manipulations,
which are not included here due to space constraints. Essen-
tially identical results have been published by mathematicians
studying different problems (e.g., Sejdinovic et al., 2013);
however, the connection to RSA and CKA appears to be over-
looked, or at least underappreciated, by the neuroscience and
deep learning communities. To appreciate the significance of
this result we state several implications below.

Corollary 1. Linear CKA is equivalent to squared Euclidean
distance RSA with centering.

This follows from our main proposition since the squared
Euclidean distance can be written d(x,x′) = x⊤x + x⊤x′ −
2x⊤x′. We see that this coincides with eq. (3) with a linear
kernel function k(x,x′) = x⊤x′. We note that linear CKA and
squared Euclidean distance RSA are arguably the most pop-
ular variants of each respective method.

Corollary 2. Nonlinear CKA is equivalent to a form of topo-
logical RSA with centering (Lin & Kriegeskorte, 2024).

In topological RSA, a nonlinear function φ(·), called the
geo-topological transform, is applied elementwise to the RDM.
The key attributes of φ(·) are that (a) it monotonically in-
creases and (b) it saturates at some maximal value (see Fig.
1a). Applying φ then has the effect of preserving distances
close to zero and flattening out large distance scores, which
accentuates the topological features of the neural representa-
tions (Lin & Kriegeskorte, 2024).

Let D̃
X
= φ(DX ) and D̃

Y
= φ(DY ) denote the transformed

RDMs. If we incorporate the centering operation into topolog-

ical RSA, the similarity score becomes S(CD̃
X

C,CD̃
Y

C). Our
main proposition implies that we can view this as a form of

CKA if we can identify kernel matrices K̃
X

and K̃
Y

that satisfy:

D̃
X
i j = K̃

X
ii + K̃

X
j j −2K̃

X
i j and D̃

Y
i j = K̃

Y
ii + K̃

Y
j j −2K̃

Y
i j (5)

It is easy to define nonlinear kernel functions k(·, ·) that satisfy
this relationship. For example, Kornblith et al. (2019) studied
the RBF kernel with lengthscale parameter ℓ > 0:

k(x,x′) = exp(−∥x− x′∥2
2/ℓ) (6)

Plugging this choice of kernel into eqns. 2 and 3 yields:

D̃
X
i j = 2−2k(xi,x j) and D̃

Y
i j = 2−2k(yi,y j) (7)

The definition of the kernel in eq. 6 implies that the elements of

D̃
X

and D̃
Y

are monotonically increasing and saturating func-
tions of the distance, with the lengthscale parameter ℓ > 0
controlling the steepness of the transformation (see Fig. 1b).
Thus, CKA with nonlinear kernels—which is explored in works
by, e.g., Alvarez (2022) and Kornblith et al. (2019)—is closely
related to a recently proposed extension of RSA.

Figure 1: (a) Example geo-topological transform function, φ.
(b) Effective geo-topological transform applied by nonlinear
RBF CKA (colors correspond to different lengthscale parame-
ters, ℓ). (c-f) Example 2D neural responses to 3 stimuli. Un-
centered RSA (uc-RSA) is inflated above zero, while CKA and
centered RSA (c-RSA) scores correctly indicate that the re-
sponses are maximally dissimilar.

Discussion
CKA and distance-based RSA are perhaps the two most pop-
ular approaches for quantifying similarity in neural population
codes. We have shown that these are actually equivalent if
one incorporates a mean centering transformation D 7→CDC
into RSA and uses a cosine similarity comparison criterion.

This begs the question: Is it a good idea to mean center
RDMs in RSA analysis? We defer a complete analysis to
future work, but remark that centering has the effect of re-
scaling RSA similarity scores to range from zero (least simi-
lar) to one (most similar). In Fig. 1c-d we enumerate a min-
imal example of 2D neural responses to 3 conditions, which
yield a linear CKA score of zero and an uncentered-RSA score
≈1/3. Fig. 1e-f visualizes these responses as three points
in 2D space. In fact, one cannot arrange a set of 3 points
in 2D space that make the uncentered RSA score go below
1/3. Thus, without centering, RSA scores can be inflated
above zero, which one might argue is undesirable. Incorporat-
ing centering “fixes” this problem and makes RSA with cosine
RDM similarity precisely equivalent to CKA. However, further
research into the desirability of centering is needed.

In conclusion, we have shown that two of the most
influential frameworks for quantifying similarity in neural
representations—CKA and RSA—are close to equivalent.
This under-appreciated equivalence can greatly simplify com-
parisons of neural representations. For example, Cortes et
al. (2012) derive error bounds on how many sampled stimuli,
M, are needed to accurately estimate CKA. Our work shows
how their mathematical analysis can be immediately applied
to RSA. Likewise, statistical frameworks developed for RSA
(e.g. Diedrichsen et al., 2021; Schütt et al., 2023) can be im-
mediately adapted and applied to CKA-based analysis.
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