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Abstract

The prefrontal cortex (PFC) exhibits a remarkable capac-
ity to employ two distinct strategies when engaging in
cognitive tasks. Upon encountering a novel task, it lever-
ages high-dimensional representations, well positioned
for rapid linear decoding. However, with growing task
familiarity, the PFC transitions to employing generalis-
able low-dimensional neural codes. Through a system-
level modelling approach, we propose that these proper-
ties emerge naturally in recurrent neural networks (RNNs)
that learn on two distinct timescales: (i) on a faster
timescale an external controller drives RNN dynamics to
generate task-encoding but relatively unstructured, high-
dimensional representations, which is then followed by
(ii) a slower optimisation of recurrent connections and
consequently more structured, low-dimensional repre-
sentations. We validated these predictions by comparing
model representations to neural recordings from the pre-
frontal cortex of non-human primates that were trained
to learn a complex cognitive task from scratch. In sum-
mary, our results suggest a learning-dependent control of
prefrontal dynamics via a separate brain-region for high-
to-low representational switching.
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Introduction

The geometry of neural representations employed by the brain
is a subject of intense debate. In the PFC of performing ani-
mals, for example, there is evidence both for high-dimensional
and randomly mixed neural selectivity (Rigotti et al., 2013)
but at the same time also low-dimensional and highly struc-
tured representations (Hirokawa, Vaughan, Masset, Ott, &
Kepecs, 2019). It has been suggested that learning plays
a key role in determining which of these opposing strategies
is used. Specifically, whilst high-dimensional representations
may be initially useful for linear separability of novel task fea-
tures, low-dimensional representations enables better gener-
alisation and reduced metabolic costs.

Here we propose a neural network framework which ex-
plains the switch from high to low representations over learn-
ing. Specifically, we hypothesise that task learning unfolds
in two distinct phases, orchestrated by an external controller.
During the initial, fast learning phase, the PFC may operate
as a dynamic reservoir supporting rich, high-dimensional rep-
resentations optimised by external control signals. Crucially,
these initial representations are temporary and therefore less
constrained by longer-term biological considerations such as

metabolic efficiency or robustness to internal noise. In con-
trast, the subsequent, slower phase is characterised by local
synaptic plasticity within the PFC, progressively refining these
representations toward lower dimensionality. This refinement
explicitly accounts for biologically realistic constraints, ulti-
mately resulting in stable and energy-efficient neural repre-
sentations suitable for repeated task execution (Stroud et
al., 2025; Farrell, Recanatesi, Moore, Lajoie, & Shea-Brown,
2022).

Modelling Framework

Figure 1: a,b, Possible learning frameworks. c, Structure of
the XOR task

To implement multi-phase learning, we consider how rep-
resentations change within a recurrent neural network whose
hidden state h is driven by external input x and an external
task-optimised signal c. Specifically, we model neural dynam-
ics with

τḣ =−h+ tanh
(
Wrech+Winpx+Wcc+η

)
, (1)

where τ is the membrane time constant (τ = 50ms), Wrec,
Winp, Wc denote the recurrent, input and weights from the con-
troller to the RNN, respectively, and η being a sample from a
Gaussian white noise process.

Since c is used to effectively guide the network to desir-
able states, it is considered a control signal for the RNN. In
this work, we consider c as the output of a feedforward con-
troller network C that is bidirectionally connected to the RNN,



c = C (h). Crucially, during exposure to a novel task, distinct
phases of learning are assumed. In the first phase, which
is assumed to be relatively fast (e.g. within one day), con-
troller weights WC are updated, whilst RNN weights WRNN =
{Winp,Wrec} remain fixed to their randomly initialised values.
In the second phase, which is assumed to be slower (e.g.
across days), the RNN weights WRNN are now updated. We
contrast this controller-based learning strategy with the more
standard framework in which an RNN continually learns with-
out an external controller (Fig. 1a vs b).

Comparison of model activations and
nonhuman PFC activity

To evaluate our model’s predictions, we drew on a recent ex-
perimental study demonstrating learning-related transforma-
tions in neural representations (Wojcik et al., 2023). In this
study, macaques were trained to perform a context-dependent
XOR task, which required non-linear integration of shape and
colour cues to predict reward outcomes (Fig. 1c). Across
multiple sessions, neural recordings from the PFC showed
both an enhanced encoding of the XOR, consistent with learn-
ing, and a concurrent reduction in dimensionality. To assess
whether our framework recapitulates these empirical findings,
we trained RNNs on an analogous task. Network weights
were updated using gradient descent to minimise task error.
Following prior work (Stroud et al., 2025; Whittington, Dorrell,
Ganguli, & Behrens, 2023), we incorporated biologically mo-
tivated regularisation of both weights and activations during
the slow phase of learning, providing a plausible mechanism
for dimensionality reduction.

The controller-based framework captures
multi-phase learning

The hidden populations both, in the standard RNN and the
controlled RNN, rapidly acquired the ability to predict the XOR
during the initial ”fast phase” of training, mirroring the learning
dynamics observed in the PFC within the first day (Fig. 2a). To
further investigate the underlying neural representations, we
examined their geometry and dimensionality. Building on the
methods of Bernardi et al. and Wojcik et al., we tested whether
the XOR motif was encoded in an abstract format by calculat-
ing cross-condition generalisation scores (Fig. 2b). Further-
more, we quantified the dimensionality of these neural repre-
sentations using shattering dimensionality (Rigotti et al.;Fig.
2c). In the standard RNN, performance was tightly coupled
with an increase in the abstractness of the XOR representa-
tion and a concurrent reduction in dimensionality. In contrast,
the controller-based model exhibited a distinct decoupling be-
tween learning progress and changes in neural geometry and
dimensionality. As predicted by reservoir computing, dimen-
sionality increased during the initial ”fast phase”, where con-
trol signals are optimised to manipulate the RNN. This was
followed by a significant decrease in dimensionality during the
”slow phase” as local weight adjustments within the RNN took
place. Notably, this dynamic also influenced the format of the

Figure 2: Task representation geometry and dimensionality
in artificial and cortical neural networks. a, linear XOR de-
coding; b, XOR abstractness as measured by cross-condition
generalised decoding; c, Neural dimensionality, mean across
all possible binary decoders; b, c corrected for initial values.

XOR representation - no geometric changes were detected
during the ”fast” learning phase. Only the controller-based
framework reproduced the population dynamics observed in
the PFC.

Discussion

Conceptually, this multi-phase learning approach aligns with
theories of memory consolidation, where task-specific knowl-
edge gradually transitions into stable cortical circuits, enhanc-
ing generalisation (Sun, Advani, Spruston, Saxe, & Fitzgerald,
2023). Consistent with this, we observed that recurrent weight
updates resulted in neural representations that exhibit greater
temporal stability and reduced dependence on external con-
trol signals (data not shown).

An open question remains regarding how the mammalian
brain orchestrates the interplay between fast and slow learn-
ing processes. In our model, plasticity arbitrarily shifts from
controller-mediated rapid adjustments to slower RNN-based
learning, simulating the transition from initial task acquisi-
tion to sustained skill refinement analogous to within-day ver-
sus across-day learning in animals. The mammalian brain,
however, likely employs a more sophisticated architecture,
involving distinct yet interacting neural substrates for each
learning phase. We speculate that rapid learning predom-
inantly engages supervised or reinforcement-driven mecha-



nisms due to their reliance on immediate error or reward sig-
nals. These mechanisms might interact with slower consolida-
tion processes implemented via unsupervised, local learning
rules that incrementally refine neural representations over ex-
tended timescales (Feulner, Perich, Miller, Clopath, & Gallego,
2025).
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