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Abstract
Understanding higher level cognitive processes is a cen-
tral problem in neuroscience. The Neuroidal model pro-
vides a useful framework for posing these problems in a
computer science context. There has been significant re-
cent work trying to understand memory capacity in the
Neuroidal model but this work was done assuming that
the network of neurons was an Erdős-Rényi (ER) random
graph. However, the network of neurons in the brain has
been shown to exhibit small-world properties, which are
not present in ER graphs. In this research we explore
replacing ER graphs with Watts-Strogatz and Barabási-
Albert small-worlds graphs in order to more accurately
model the biological reality. We aim to investigate the
implications for memory capacity and interference within
the Neuroidal model. We show that the algorithm JOIN
can function with small-worlds graph structures and al-
low the Neuroidal model to reach capacity.
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Introduction
We build upon the Neuroidal model to show that its underly-
ing graph structure can contain small-worlds subgraphs. We
study its ability to memorize information with neuronal struc-
tures that carry more biological plausibility within a computa-
tional context. We offer novel results on showing the viabil-
ity of two types of small-worlds graph structures for unsuper-
vised memorization. We utilize an empirical simulation frame-
work to observe memory capacity. These advancements open
up possibilities for further work on neurobiologically-grounded
learning across a lifetime.

Background
The Neuroidal model is an algorithmic, deterministic, spiking
neural network with uniformly random synaptic connectivity,
hetero-associative memory, and with weak and synchronized
timing mechanisms (Valiant, 2000). The Neuroidal model is a
directed, Erdős–Rényi (ER) Gnp random graph that encodes
memories. It consists of a number of neurons n, edge proba-
bility p, and with synapse weights assigned 1

k .

The JOIN algorithm has been introduced to perform mem-
ory generation by connecting two existing memories to a
newly created memory. JOIN is reminiscent of coding within
the brain, which has been found to occur in real neural sys-
tems (Tacikowski et al., 2024). Extensive results have been
found for JOIN’s effect on the overall capacity of the model
when neuron sharing is allowed (Perrine et al., 2024).

Small-worlds Background
Since its inception by Milgram (1967), many neuroscience
studies have investigated the structure of random brain net-
works and found that they exhibit small-world properties (Bas-
sett & Bullmore, 2006; Zippo et al., 2013). It has also been
shown that real-world brain networks show power-law de-
gree distributions, which are also not present in ER graphs
(Chialvo, 2004; Tomasi et al., 2017).

Watts-Strogatz (WS) Graphs WS graphs are expansions of
ER graphs, where each node is first connected to d nearest
neighbors, then every edge is considered with the probability
p to be rewired or replaced. When p is low, nodes remain con-
nected to their nearest neighbors. When p is high, it becomes
increasingly similar to an ER graph (Watts & Strogatz, 1998).

Barabási-Albert (BA) Graphs BA graphs are first initialized
with d nodes, each with a connection to every other node. At
each step, a node is added to the graph, which then samples
d nodes from the existing network and considers a connection
to each with a probability pi, which differs based on the degree
of the outgoing node (Albert & Barabási, 2002).

Graph Metrics
Here are three key measurements that are commonly used to
describe the small-worlds properties of a graph:

• Average Path Length: mean of all shortest path lengths.

• Clustering Coefficient: connectedness of subgraphs.

– Global: ratio of all triangles to all triples in the graph.
– Local: ratio of existing edges between neighbors to the

total possible incident edges.

A graph is said to be a “small-world” when it has both a low
average path length and a high clustering coefficient.



Methodology

For optimization purposes, we offer the following adjacency
matrix equations to calculate average path length, the global
clustering coefficient, and the local clustering coefficient:

L =
1

n · (n−1) ∑
i̸= j

min{A1
i j, . . . ,A

k
i j}. (1)

C =
∑i, j,h Ai jA jkAki

∑i ki · (ki −1)
. (2)

Ci =
∑ j,h Ai jAihA jh

ki · (ki −1)
. (3)

We perform memorization within two specific instances of
the Neuroidal model, as derived from previous work (Valiant,
2005). Our code is available here: https://github.com/
chandradeep24/Valiant/tree/adjacency

Results

To validate our simulation’s small-world properties, we ran
comparisons between several additional graph metrics and
highlight the most notable results here. Figures 1 and 2 show
averaged results from over 100 trials where n = 105. These
graph metrics suggest that BA graphs should be effective for
the Neuroidal model, due to their consistency. This perception
changes when we perform memorization to capacity.

Average Path Length Figure 1 shows that ER and WS
graphs had difficulty connecting to every node, causing infinite
average path lengths. The path length of BA graphs remained
consistent, making them seemingly the most desirable.

Figure 1: Edge Probability (p) vs. Mean Path Length (L)

Clustering Coefficients Figure 2 shows calculation of the
global clustering coefficient. BA graphs still do the best
at maintaining a higher clustering coefficient within sparse
graphs. Results for the local coefficient are omitted, as their
charts did not reveal novel behavior.

Figure 2: Probability (p) vs. Global Clustering Coefficient (C)

Capacity Results
For each capacity result in Table 1, we have our Neuroidal
model simulation attempt to memorize approximately 500,000
items of information until an interference threshold of 1% is
reached. Each simulation was run 10 times on a consumer
personal computer, and then the results were averaged.

n = 104, d = 27, k = 25 ER WS BA
Time (sec) 296 52 560
Capacity 973 255 4

Interference 1.08% 1.25% 1.2%

n = 104, d = 211, k = 26 ER WS BA
Time (sec) 41 63 578
Capacity 226 238 4

Interference 1.08% 1.21% 1.2%

Table 1: Graph Type Capacity Simulation Results

The JOIN algorithm is shown to continue to perform well
within small neighborhoods, as with ER and WS graphs. Sur-
prisingly, Barabási-Albert graphs performed the worst here,
likely a direct result of the large hubs causing a high interfer-
ence rate. BA graphs showed promise for stability and clus-
tering, however this was found to be detrimental to the model.

Conclusion
We have shown that Watts-Strogatz and Barabási-Albert
graphs can be substituted for Erdős-Rényi graphs in the Neu-
roidal model. Our results show that BA graphs may not be
sufficient for use within the Neuroidal model, at least within
the tested model specifications.

Previous work shows evidence that ER graphs could be suf-
ficient for modeling memorization in the hippocampus (Perrine
et al., 2024). Further work could include investigation of quan-
titative parameters between a different region, such as the en-
torhinal cortex (Tacikowski et al., 2024), in comparison to our
small-worlds Neuroidal model.

https://github.com/chandradeep24/Valiant/tree/adjacency
https://github.com/chandradeep24/Valiant/tree/adjacency
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