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Abstract 
Cognitive maps are hypothesized to organize 
abstract features spatially, akin to physical 
environments, to guide decision and generalization. 
We propose that to better facilitate reward learning, 
these maps may distort by how fast value changes 
(i.e., value gradients), over-representing dimensions 
where feature changes yield larger reward 
differences. Using fMRI, we tested this during a 
reinforcement learning task with jellyfish images 
varying in two features (spot number, tentacle 
number) as options. Participants learned value 
maps where one feature had twice the reward 
sensitivity of the other. Under the assumption of 
internal maps scaled by value gradients, we 
observed six-fold periodic BOLD signals—a 
signature of grid-like coding—in entorhinal cortex 
(EC) and medial prefrontal cortex (mPFC). 
Compared with a range of alternative scales, signal 
strength peaked around value gradient scale and 
correlated with choice accuracy. These results point 
to a possibility that cognitive maps may be optimally 
constructed to reflect the reward structure in service 
of goal-directed behavior. 
Keywords: cognitive map, grid-like coding, value 
gradient, fMRI 

Introduction 
Grid-like codes—periodic neural representations 
exhibiting six-fold symmetry—have been identified in the 
human entorhinal cortex and medial prefrontal cortex 
(mPFC) during virtual navigation tasks(Doeller, Barry & 
Burgess, 2010) and, more recently, abstract cognitive 
tasks (Constantinescu, O'Reilly & Behrens, 2016; Park, 
Miller & Boorman, 2021). Such geometric neural 
representation is widely hypothesized to reflect internal 
cognitive maps of task structure, functioning as a metric 
system for navigating both physical and conceptual 
spaces (Giocomo, Moser & Moser, 2011; Stachenfeld, 
Botvinic, & Gershman, 2017).  

While early studies emphasized the role of grid-like 
codes in encoding the statistical structure of physical or 
conceptual spaces in a context-invariant manner (Fyhn 
et al., 2007; Hafting et al., 2005), emerging evidence 
suggests that these representations may be shaped by 
goal-directed processes. Specifically, rodent studies of 
spatial navigation demonstrate that grid patterns can be 
flexibly reshaped by goal locations, allowing the 
integration of reward information into the internal 
cognitive map (Boccara et al., 2019). This was explained 
as an over-representation of high value location, which 
is behaviorally important and thus frequently visited 
(Stachenfeld, Botvinic, & Gershman, 2017). Moreover, 
grid-like codes are identified during reward learning or 
value-based choices processes in humans and non-

human primates(Park, Miller & Boorman, 2021; 
Bongioanni et al., 2021). These neural patterns are 
believed to represent feature space, which is important 
for predicting future reward in value learning (Gustafson, 
& Daw, 2011). 

Building on prior findings, we explore a novel possibility 
that grid-like codes of abstract value map may be also 
sensitive to reward gradient––the direction of the 
steepest change in the value function (i.e., where small 
changes in a feature will yield largest reward differences). 
We reason that, to better facilitate reward learning, the 
internal representation of value space may be flexibly 
modulated by this gradient—stretching dimensions 
where value changes more rapidly to enhance 
representational precision. Of note, this hypothesis is not 
mutually exclusive with prior accounts emphasizing the 
over-representation of high-value locations. Rather, it is 
dissociable: a region associated with low reward 
magnitude but high local value gradient may still warrant 
enhanced resolution to support efficient learning and 
generalization.  

Specifically, we predict that during reward learning, the 
cognitive map of value space is anisotropically stretched 
along feature dimensions in proportion to the local value 
gradient (Fig. 1A). As such distortions would alter the 
geometry of the underlying representational space, and 
thus the internal directions of ‘navigation’ through it, we 
propose that such modulation would affect the detection 
of sixfold periodicity of BOLD by directions: Six-fold 
periodicity in neural signals should be maximized when 
analysis is aligned with the geometry of the subject’s 
internal cognitive map. 

Design 
We tested the hypothesis in a reward learning task with 
spatially correlated reward, generated by a value 
function unknown to subjects. Subjects need to choose 
between jellyfish images differing in spot count (X: 2-11) 
and tentacle count (Y: 2-11). Each jellyfish was assigned 
with a value, which is determined by its X and Y values. 
In particular, one dimension has twice the influence on 
value as the other, with different influential dimension in 
the two between-subject conditions (Figure A). Subjects 
performed a value learning (VL) task inside fMRI. On 
each trial, subjects chose between two jellyfishes, where 
the chosen value would later be delivered. The true 
value of both options  were revealed after choices. Given 
the large number of possible stimuli (100 in total), 
subjects can hardly use a simple associative learning 
strategy but rather need to learn to underlying value 
function for generalizing value dependency to novel 
options. For each subject we derived their subjective 
relative importance of the two features from their choices, 
by which the dimensions of cognitive map are assumed 
to be stretched.  



Results 
Behavioral results indicated that participants quickly 
learned the value mappings, with choice accuracy rising 
to 90% by the second session (50 trials in 1 session; 
Figure B). Logistic regression analysis of choices 
(Choice ~ logit( 𝛽! ∗ ΔX + 𝛽" ∗ ΔY)) revealed that 
participants' decisions depended more strongly on the 
feature dimension with greater value influence(Figure C), 
critical to our further neural tests. Noticing most subjects 
did not actually learned the exact ground truth (relative 
importance 2:1), thus subjective value gradient would be 
assumed as scaling parameter for cognitive map. 

fMRI analyses identified six-fold periodic signals in 
both EC and mPFC when presuming feature space 
scaled by subjective value gradients. Following previous 
studies, cross validation analysis (CV) of a six-fold 
periodicity across sessions (later sessions, 2-6), where 
training sessions was fit by a sixfold model to estimate 
the phase 𝜌  of sixfold periodicity (𝐵𝑂𝐿𝐷	~𝑐𝑜𝑠(6 ∗ (𝜃 −
𝜌)) ;	 θ: navigation direction on each trial in gradient 
scaled space; ρ: individual parameter, phase of sixfold 
periodicity). The estimated 𝜌 were then used to predict 
BOLD in the remaining one testing session. In a whole-
brain CV analysis we identified lEC, rEC and mPFC as 
three ROIs showed potential grid like code where grid 
cells were previously recorded (Figure D). Further CV 
analysis in these ROIs demonstrated consistent sixfold 
effect across sessions (predictive lEC testing sessions 
using lEC training session: cross subjects mean 
spearman rho=.04, P =.001; rEC-rEC, mean 
rho= .04,P<.001; mPFC-mPFC, mean rho = .02; rEC-
lEC, mean rho=.03, P<.001; mPFC-lEC, mean rho=.005, 
P=.65; mPFC-rEC, mean rho=.02, P=.03; Figure E). 
When navigation directions (θ-ρ) were binned into 30° 
intervals, all three regions of interest showed clear 
hexagonal modulation patterns(Figure F, G &H). Notably, 
the effect size in left EC correlated significantly with both 
choice accuracy (Pearson r = 0.38, p = 0.006; Figure L) 
and choice sensitivity to both features (r = 0.33, p = 
0.018; Figure M), suggesting this sixfold effect in 
gradient scaled space is  related to behavioral 
performance. 

The specificity of these effects was confirmed through 
comparison with alternative scaling parameters. For 
each subjects, a range of alternative scaling parameters 
were assumed. Under these alternatively scaled 
geometry, the six-fold periodicity was strongest when 
using the subjective value-gradient-scaled geometry 
(Figure I, J &K), supporting our hypothesis that grid 
representations adapt to value gradients.  

Our findings provide evidence for grid-like coding of 
value-gradient scaled feature spaces, with the strength 
of this representation relating to individual differences in 
learning performance. The results suggest that cognitive 

maps of abstract features are dynamically warped 
according to value gradients, potentially to optimize 
reward learning and generalization. Extend the concept 
of fitness maximization beyond perception fields to 
higher-level decision processes. 

  
Figure A. left: Value map design(two conditions); right: 
predicted cognitive map scaled by value gradient. dashed 
line indicate the direction with identical value. When 
comparing the two options, subjects were hypothesized to 
mentally ‘navigate’ between them, where the navigation 
direction θ is affected by gradient scaling. 
(B) Choice accuracy exceeded 90% after session 2. 
(C) Regression coefficients from (Choice ~ logit(dx + dy)). 
Horizontal axis index the influential feature. Subjects 
showed larger dependency on the influential dimension 
(below the b1=-b2 line). 
(D) Whole-brain analysis revealed sixfold periodicity in 
lEC/rEC/mPFC (p<0.005 uncorrected, k>10) in gradient-
scaled geometry. 
(E) ROI analysis confirmed sixfold periodicity (grid angles 
2-6) and cross-ROI consistency (lEC-rEC/mPFC-rEC) in 
space scaled by value gradient. 
(F-H) Sixfold modulation in 30° bins of (𝜃 − 𝜌): (F) lEC, (G) 
rEC, (H) mPFC .  
(I-K) Test of alternative scales . Zero point of X axis 
indicates each participants’ estimated subjective value 
gradients. Tested scaling range of influential dimension: 
1.1#$%~1.1$% (0.15~6.73) times. I: lEC; J: rEC; K: mPFC. 
(L) Sixfold effect size in lEC of each subjects as estimated 
in Figure 5 positively correlates with their choice accuracy 
(r = 0.38, p = 0.006). 
(M) Sixfold effect in lEC positively correlated with choice 
sensitivity to features (r = 0.33, p = 0.018). Choice sensitivity: 
rooted sum square of the two coefficients from the 
regression Choice ~ logit(dx + dy). 
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