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Abstract

When explaining brain responses Y with a set of predic-
tors, the variance of Y is often decomposed into portions
explained by each predictor, as a reflection of their con-
tribution. The explained variance is commonly visual-
ized using Venn diagrams. This approach originates from
Fisher’s ANOVA where some of the variance of a variable
Y can be explained by orthogonal predictors, and the vari-
ance explained by the predictors together is the sum of
the variance explained by each one alone. However, in
neuroscience applications, the predictors are often cor-
related, which could cause the variance explained by two
predictors to be smaller than, equal to or greater than the
sum of each alone. Variance is not a fixed quantity of
the data that can be decomposed, but should be consid-
ered in the context of all model components. We provide
an alternative to the commonly used Venn diagram to vi-
sualize variance explained, and will provide an analytical
framework to quantitatively conduct model selection and
comparison for RSA, PCM and encoding models.
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Variance decomposition and Venn diagrams

Researchers often rely on the idea of variance decomposition
when interpreting the contributions of multiple predictors to ex-
plaining brain responses. The underlying intuition – rooted
in Fisher’s analysis of variance (ANOVA) (Fisher, 1925) – is
that we can decompose the variance of the observed data
Y into a part that can be explained by predictor X1, a part
that can be explained by predictor X2, and a residual part
that is not explained by either (Fig. 1a). The proportion of
variance explained by a certain set of predictors is the R2

value for the model. In ANOVA, where predictors X1 and X2
are orthogonal, the variance explained by the two together
equals the sum of the variance explained by each one alone:
R2

Y |1∪2 = R2
Y |1 +R2

Y |2.

Several studies have sought to extend this logic to the more
common case of correlated predictors (Bonner and Epstein,
2018; de Heer et al., 2017; Lescroart et al., 2015). In this
case, often the variance explained by two predictors together
is smaller than the sum of the variance explained by each pre-
dictor alone. The difference is attributed to the ”overlapping”
proportion of the variance that can be explained by either pre-
dictor, that is R2

Y |1,2 = R2
Y |1 +R2

Y |2 −R2
Y |1∪2. This logic is often

visualized using a Venn diagram, subdividing the variance of
Y into four parts (Fig. 1b). While intuitively appealing, this
approach can lead to incorrect conclusions about how mod-
els with multiple correlated predictors behave. In the follow-
ing sections, we outline several scenarios where this intuition
breaks down.

Figure 1: The logic of variance decomposition breaks
down for correlated predictors. (a) In the case of uncor-
related predictors, the variance of Y (orange circle) can be
partitioned into a portion explained by X1 (R2

Y |1), a portion ex-

plained by X2 (R2
Y |2), and a residual portion not explained by

either predictor (1−R2
Y |1∪2). (b) In the case of correlated pre-

dictors, one can attempt to partition the variance of Y into the
same portions as in panel a. The discrepancy between R2

Y |1∪2

and the sum of R2
Y |1 and R2

Y |2 is attributed to the overlap in

variance explained by the two predictors (R2
Y |1,2).

Variance decomposition breaks down for
correlated predictors

Suppression

Suppression occurs when the variance in Y explained by pre-
dictors X1 and X2 together exceeds the sum of the variance
explained by each individually, that is, R2

Y |1 +R2
Y |2 < R2

Y |1∪2.
For example, suppose X2 explains some variance in Y , while
X1 does not. If X1 offsets components of X2 that do not ex-
plain Y , the linear combination of X1 and X2 can explain more
variance in Y than X2 alone. In such cases, the variance in Y
that is attributed to overlapping contributions from X1 and X2 –
i.e., R2

Y |1,2, as estimated by the decomposition logic – is neg-
ative. Indeed, suppression occurs for half of possible pairwise
correlations between Y , X1, and X2. A concrete example of
suppression is provided in Mathematical Details.

Explained variance summing does not imply
uncorrelated predictors or predictions

It is often assumed that if the variance in Y explained by in-
dividual predictors X1 and X2 adds up to the variance ex-
plained by their linear combination – i.e., R2

Y |1 +R2
Y |2 = R2

Y |1∪2
– then the predictors must be uncorrelated. However, this is
not the case: this equality can hold even when X1 and X2
are correlated, as long as the overlap term R2

Y |1,2 is zero.
This occurs when the correlations among Y , X1, X2 satisfy
r12 = 2rY 1rY 2/(r2

Y 1 + r2
Y 2), which does not require r12 to be

zero. In addition, when explained variance sums, Y predicted
by X1 and Y predicted by X2 could still be correlated. See
Mathematical Details for notation and a worked example.

Variance decomposition breaks down under
cross-validation

Consider a model that includes predictors X1 and X2. When
a third predictor X3 is added, the model may overfit, result-



ing in a decrease in explained variance on held-out data dur-
ing cross-validation. Under a variance decomposition frame-
work, this would require representing X3 as explaining nega-
tive variance – contradicting the intuitive assumptions under-
lying Venn diagram visualizations.

An alternative to Venn diagrams
We propose an alternative to Venn diagrams for visualizing
the variance explained in observed data Y by two predictors.
For any X1, X2, and Y , Fig. 2a shows the space pf all possi-
ble pairwise correlations among them. For a specific variable
Y , explaining it with X1 and X2 is equivalent to projecting Y
onto the hyperplane spanned by the two predictors (Fig. 2b-
d). When the projection falls in the blue regions, suppression
does not occur (Fig. 2b). In contrast, projections landing in
the red regions indicate cases where suppression occurs (Fig.
2c). When X1 and X2 are orthogonal, suppression cannot oc-
cur, and the projection always falls in a blue region (Fig. 2d).
The projections of Y onto X1, X2, and their linear combina-
tion correspond to predicted values. When all variables are
normalized to unit length, the squared lengths of these pro-
jections reflect the proportion of variance explained by each
model (Fig. 2b-d).

Conclusions
We show that variance decomposition and the associated
Venn diagram visualization can lead to misleading intuitions
about how models behave when predictors are correlated.
Variance is not a fixed quantity of the data that can be decom-
posed, but should be considered in the context of all model
components – particularly when interpreting model perfor-
mance or comparing models. We propose a more mathemat-
ically grounded alternative for visualizing explained variance
based on geometric projection. At the main conference, we
will present a rigorous framework for evaluating models in the
presence of correlated predictors in representational similar-
ity analysis (RSA), pattern component modeling (PCM), and
encoding models.

Mathematical Details
Correlations among variables
The correlations among variables Y , X1, X2 can be summa-

rized in a symmetric matrix:

 1 rY 1 rY 2
rY 1 1 r12
rY 2 r12 1

 , the determi-

nant of which is non-negative.

Example of suppression

As an example, let Y =
(
1 0

)T
, X1 =

(
1√
2

1√
2

)T
, X2 =(

0 1
)T

. Then we have R2
Y |1 =

1
2 , R2

Y |2 = 0 and R2
Y |1∪2 = 1.

Example of variance summing for correlated
predictors

As an example, let Y =
(
1+

√
3 1 0 −1

)T
, X1 =(

1 0 1 0
)T

, X2 =
(
1 0 1 1

)T
. Then X1 and X2 are

correlated, and R2
Y |1∪2 = R2

Y |1 +R2
Y |2. In addition, the Y ’s pre-

dicted by X1 and X2 are correlated.

Figure 2: An alternative to Venn diagrams in multiple re-
gression. (a) Visualization of all possible combinations of
rY 1, rY 2 and r12. Suppression occurs in the red regions but
not the blue regions. (b-d) 3D geometric intuition of regres-
sion as projection. Y is projected onto the plane spanned
by predictors X1 and X2. All variables are normalized to unit
length. Solid magenta lines show the predicted Y when us-
ing X1 or X2 individually. Their squared lengths correspond to
R2

Y |1 and R2
Y |2, respectively. Solid green lines represent pre-

dicted Y from the linear combination of both predictors, with
squared length equal to R2

Y |1∪2. Dashed lines indicate residu-
als. Colored dots represent all possible projections of Y onto
the predictor plane, with red regions indicating suppression
and blue regions indicating no suppression. (b) Example with
correlated predictors (r12 = 0.57). When the projection of Y
falls in a blue region, suppression does not occur. (c) As in
panel b), but with a projection falling in a red region, indicating
suppression. (d) When X1 and X2 are uncorrelated (r12 = 0),
suppression does not occur.
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