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Abstract 
People can adjust how fast they update task rules, 
depending on the volatility of their environment. We 
investigated whether this adaptivity is primarily 
driven by recently experienced volatility in task 
demands, or can also be shaped by learned, 
environment-specific associations with expected 
levels of volatility. We trained participants on a 
Wisconsin Card Sorting Task where different 
environments required different speeds of task rule 
updating. Initially, participants updated strategies 
depending on the most recently experienced levels of 
volatility (Experiment 1). However, after extensive 
(four days) training (Experiment 2), participants also 
developed environment-specific associations. Our 
findings provide important insights in how people 
learn to regulate cognitive flexibility. 
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Introduction 
Contemporary theories on cognitive control emphasize 
that the regulation of cognitive control requires learning 
(Abrahamse et al., 2016; Braem et al., 2024; Braem & 
Egner, 2018; Egner, 2014, 2023; Verguts & Notebaert, 
2009), specifically meta-learning (Griffiths et al., 2019; 
Wang, 2021). Humans can learn to set up control 
parameters, sometimes referred to as meta-control 
(Eppinger et al., 2021), by associating environmental 
features to different control processes (Chiu & Egner, 
2017; Xu et al., 2024). This way, learned control settings 
can be evoked when humans revisit these environments, 
allowing for faster changes in task updating.  

Evidence from a recent task switching study 
suggests that such learning of environment-specific 
strategies might require extensive task experience (Xu et 
al., 2024). However, traditional task switching paradigms 
leave little uncertainty about the current need for task rule 
updating, potentially demotivating humans to learn 
environment-specific statistics. Contrasting a high versus 
low volatility environment in a Wisconsin Card Sorting 
Task, Wen and colleagues (2023) recently found that 
participants used different learning rates for task updating 

in high versus low task volatility, and generalized these to 
a test phase with neutral volatility. However, this finding 
could reflect a learning and memorizing of environment-
specific control settings, or a carry-over effect of recently 
experienced volatility. Here, we manipulated volatility in a 
Wisconsin Card Sorting Task within-subjects to 
investigate if humans can learn to strategically regulate 
cognitive flexibility in response to different environments. 
We hypothesized that participants first rely on locally 
experienced differences in demands for task rule changes, 
while learned, environment-specific task updating 
strategies can only be observed after extensive training. 

Methods 
Participants. We recruited 65 and 62 participants in 
Experiment 1 and 2. After excluding participants with 
accuracy below 65%, we had 55 participants (43 females) 
and 55 participants (49 females) in Experiment 1 and 2. 
Task and procedure. Every trial, participants chose 
between two cards to match the reference card on top 
(Fig. 1A). Each card varied across four features: color, 
filling, item number, and shape, and shared only one 
feature value with the reference card. Two feature 
dimensions were randomly selected as task-relevant, 
counterbalanced across participants. Feedback was 80% 
accurate, with matching rules changing every 10 trials in 
the high volatility environment, and every 30 trials in the 
low volatility environment. Each environment was 
associated to different backgrounds: a wood or stone 
table (Fig. 1B). In probe blocks, rules changed every 20 
trials on either table to test if subjects learned and used 
the environment-volatility associations.  Participants were 
trained for either one or four days before testing in 
Experiment 1 and 2, respectively (Fig. 1C-D).  
Reinforcement learning model. We fitted choices to 
a dual-rates (DR) model, with individual learning rates for 
positive and negative feedback. We used a hierarchical 
framework, to account for both fixed and random effects 
within the data structure for parameter estimates.  
 



 
Figure 1: Wisconsin cart sorting task paradigm. (A) 
Example cards presented on each trial. (B) Table pictures. 
(C) Overview of Experiment 1. (D) Overview of 
Experiment 2. 

Results 
Learning blocks. Positive learning rates were 
significantly higher in the high-volatility environment in 
training blocks (Figure 2A), posterior probability (p_post) 
= 0.019, but not the negative learning rates, p_post = 
0.908, in Experiment 1. Similarly, after four days training, 
participants robustly applied higher positive learning rates 
in response to high volatility (Figure 2B), p_post < 0.001. 
However, there was no difference between negative 
learning rates in two environments, p_post = 0.261, in 
Experiment 2. 
Probe blocks. Critical to our hypothesis, we expected 
that the observed parameter patterns in the learning 
blocks would extend to the probe blocks. There was no 
difference between positive learning rates in two 
environments, p_post = 0.176, nor the negative learning 
rates, p_post = 0.691 in Experiment 1. However, in 
Experiment 2, negative learning rates were higher in the 
high volatility environment, p_post = 0.011, but no 
difference in positive learning rates, p_post = 0.199.  
 

 
Figure 2: Model parameter estimates in Experiment 

1 (A) and Experiment 2, day 4 (B).  
 
Learning rates evolution over learning. We 
further observed that the size of positive learning 
rates was consistent over learning (Fig 3), all p_posts > 
0.05, while the negative learning rates decreased on 
Day 2, p_post < 0.001 and became stable as of Day 
3 p_post = 0.343. Notably, the difference between 
positive learning rates in two volatility environments 
reduced over learning (95% highest density interval 
(HDI), Day 1: [0.06, 0.15]; Day 2: [0.02, 0.08]; Day 3: 
[0.00, 0.07]), while the difference between negative 
learning rates increased (95% HDI, Day 1: [-0.02, 
0.05]; Day 2: [0.01, 0.07]; Day 3: [0.02, 0.07]).  
 

 
Figure 3: Model parameter estimates in Experiment 
2, day 1 to 3.  
 

Discussions 
The current study aimed to examine the 

environment-specific regulation of task rule updating 
strategies using a probabilistic Wisconsin Card 
Sorting Task. Across two experiments, we observed 
that participants were able to learn associations 
between different strategies and co-occurring 
environmental features, i.e., table pictures, which 
enabled participants to use environmental features to 
regulate task rule updating strategies. In sum, our 
study investigated behavioral mechanisms 
underlying the environment-specific regulation of task 
updating strategies, providing empirical evidence to 
support a critical contribution of multi-day training 
schemas to form environment-control associations. 
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