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Abstract

Predicting what comes next is central to how humans pro-
cess language, and to how artificial language systems,
trained on next-word prediction, learn flexible representa-
tions that support diverse tasks. Despite the importance
of prediction in both systems, the neural mechanisms un-
derlying prediction in the human brain remain poorly un-
derstood. Inspired by the temporal straightening hypoth-
esis from vision neuroscience, we investigated predictive
representations in language processing from a geomet-
ric perspective. This hypothesis proposes that the brain
transforms complex inputs to follow straighter temporal
trajectories in representational space, enabling predic-
tion through linear extrapolation. Here, we tested whether
a similar principle applies to the human language system.
Using fMRI data from subjects listening to a natural spo-
ken narrative, we estimated representational timescale as
a proxy for trajectory straightness across regions in the
language processing hierarchy. We found that timescale
increased in higher-order regions, indicating that neural
trajectories become progressively straighter along the hi-
erarchy. These findings offer a new perspective on pre-
dictive mechanisms in language, suggesting that tempo-
ral straightening may serve as a general organizing prin-
ciple across different systems.
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The ability to predict upcoming phrases and sentences is
central to smooth and effective communication. In natural
language processing, large language models trained on next-
word prediction develop general-purpose representations that
support diverse downstream tasks. These findings have led
many to propose that prediction is a core feature of language
representations, and that the general principle of prediction of-
fers explanatory power for language processing (Caucheteux
& King, 2022; Schrimpf et al., 2021). However, it remains
challenging to develop falsifiable hypotheses about the neural
computation of prediction, and we still lack a clear understand-
ing of how predictive objectives shape these representations.

Recently, in vision, Hénaff et al. (2019) introduced a the-
oretical framework that connects the goal of prediction to the
geometry of neural population representations: the Temporal
Straightening hypothesis. Visual prediction is difficult because
natural input to the retinas follows complex, irregular temporal
trajectories. This hypothesis suggests that our brain trans-
forms recent inputs to follow straighter trajectories, facilitating
prediction through linear extrapolation (Fig. 1a). Since its in-
troduction, the hypothesis has been supported by empirical
evidence from psychophysical, physiological, and computa-
tional studies of the visual system.

Remarkably, temporal straightening has also been ob-
served in a fundamentally different kind of system: autore-
gressive transformer models (i.e., the GPT model family). In
this context, straightness was quantified by analyzing the tem-
poral trajectory of language representations in the model’s ac-
tivation space, where each point corresponds to the activation

pattern across units in a given layer in response to a word.
For a sequence of words, curvature was defined as the angle
between adjacent activation vectors, and average curvature
across a sentence was computed to assess changes across
layers. In trained models, curvature systematically decreased
from the first to the middle layers of the network (Hosseini &
Fedorenko, 2023).

Motivated by this finding, we aimed to evaluate represen-
tational straightening in human brain responses to language.
We hypothesized that speech and language representations
in the brain similarly follow the principle of temporal straight-
ening, and that this effect becomes more prominent along the
processing hierarchy.
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Figure 1: A new approach to estimate population trajec-
tory curvature from fMRI data. a. Temporal straightening hy-
pothesis. b. Task paradigm: fMRI responses were recorded
while two subjects listened to a narrative story. ¢. Example
voxel activity from four hierarchical language regions. d. We
simulated high-dimensional population trajectories using first-
order autoregressive (AR(1)) processes. The average trajec-
tory curvature was determined by the timescale of the process
(i.e., the AR coefficient). The dimensionality of the trajectory
had no effect. e. We fit an AR(1) to averaged voxel-activity
traces for two subjects. Across the language-processing hier-
archy, the coefficient estimate tended to increase, correspond-
ing to straighter trajectories. Cl based on nonparametric boot-
strapping.

Results

To test our hypothesis, we analyzed previously collected fMRI
data from two human subjects who listened to a spoken narra-
tive from The Moth Radio Hour. The story was around 10 min-
utes long and was repeated 10 times. We extracted data from
four regions of interest (ROI) that span the language process-
ing hierarchy: auditory cortex (AC), superior premotor ventral
area (sPMv), precuneus (PrCu), and prefrontal cortex (PFC)
(LeBel et al., 2023) (Fig. 1b—c). A direct approach to measur-
ing neural curvature in fMRI data treats each voxel within a
ROI as a separate axis in representational space, computes



angles between successive time points, and averages them.
While effective with low-noise data, the inherent noise in fMRI
renders such direct measures unreliable. To address this, we
considered that temporal straightness may be related to rep-
resentational timescales, which have been studied extensively
in fMRI (Lerner, Honey, Silbert, & Hasson, 2011; Jain et al.,
2020). When speech is processed, auditory information first
reaches the primary auditory cortex (AC), which operates on
sub-second timescales and encodes rapidly changing acous-
tic and word-level features. This information is then passed
through a hierarchy of regions—including parts of the supe-
rior temporal and frontal lobes—where it is integrated over in-
creasingly longer timescales to construct meaning. Conse-
quently, regions with shorter timescales are expected to ex-
hibit more dynamic changes in representational space, yield-
ing temporal trajectories with higher overall curvature.

To verify our intuition, we used first-order autoregressive
(AR(1)) processes to simulate high-dimensional population
trajectories. We varied the AR coefficient, which controls the
timescale of the process, and measured the resulting aver-
age trajectory curvature. This revealed a systematic relation-
ship: higher AR(1) coefficients yielded lower average popula-
tion curvature. Importantly, the dimensionality of the trajectory
had no effect on this relationship. These results confirm that
the AR(1) coefficient can serve as an indirect indicator of pop-
ulation trajectory curvature in a given brain area (Fig. 1d).

Guided by our simulation results demonstrating that AR(1)
coefficients can serve as proxies for trajectory curvature and
timescale, we applied the same modeling approach to our
fMRI dataset to examine timescale variation across the lan-
guage processing hierarchy. For each ROI, we first aver-
aged the fMRI responses across repetitions of the narrative
stimulus to reduce trial-by-trial variability. We then averaged
across voxels within each ROI to obtain a single, denoised
time course per region. Fitting AR(1) models to these time
courses yielded coefficient estimates that reflect the intrin-
sic temporal integration of each region. Consistent with our
hypothesis, AR(1) coefficients tended to increase along the
language-processing hierarchy, indicating longer timescales
and progressively straighter neural trajectories in higher-order
regions. We estimated 95% CI by bootstrapping: repeatedly
sampling 10 runs with replacement and applying the same av-
eraging and AR(1) fitting procedure as in the main analysis to
each sample. For both subjects, the coefficient estimates of
AC are significantly different from sPMV, precuneous and pre-
frontal (p < 0.05, Fig. 1e).

While these results are consistent with our hypothesis, esti-
mation of AR(1) coefficients from BOLD signals is susceptible
to noise, and importantly, the magnitude of this noise varies
across brain regions. In particular, earlier areas (e.g., AC
and sPMv) tend to have higher signal-to-noise ratios (SNRs)
than later areas (e.g., PrCu and PFC), raising the possibil-
ity that the observed increase in timescales across the hi-
erarchy could be partly driven by differences in data quality.
To address this, we performed a control analysis in which

we compared AR(1) coefficients across ROIs while holding
SNR constant. Specifically, for each ROI, we computed the
SNR of each voxel and grouped the voxels into three SNR
bins, using the same bin edges across all ROIs. Within each
bin, we averaged the trial-averaged responses across voxels,
and fit AR(1) models to these bin-wise average time courses.
We found that the original pattern of increasing AR(1) coeffi-
cients across the language hierarchy held consistently across
all SNR bins, suggesting that the observed timescale differ-
ences are not driven by variation in SNR (Fig. 2).

Together, our simulation and model-based fMRI analysis
suggest that neural population trajectories become progres-
sively straighter along the language hierarchy in the human
brain.
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Figure 2: Controlling for SNR in timescale estimation.
AR(1) coefficients estimated after binning voxels within each
ROI by SNR, shown separately for each subject. The original
pattern of increasing timescales across the language hierar-
chy remained consistent across all SNR bins, indicating that
the observed effect is not driven by variation in SNR. Cl based
on nonparametric bootstrapping.
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Discussion

Inspired by the temporal straightening hypothesis in vision,
we tested whether a similar principle governs neural com-
putations in the human language system. We showed that
representational timescale, estimated via AR(1) coefficients,
reflects trajectory straightness and can be recovered from
noisy fMRI data. Timescale increased systematically along
the language hierarchy, suggesting that higher-order regions
maintain straighter trajectories to support prediction. Extend-
ing temporal straightening from vision to language points to
a shared computational principle across brain systems—and
more broadly, across systems optimized for prediction. Sup-
porting this, we found striking convergence between our re-
sults and prior findings in autoregressive transformer models,
suggesting common predictive strategies in biological and ar-
tificial systems. Our work also introduces representational ge-
ometry as a novel lens on predictive mechanisms in language.
While our framework is grounded in geometric principles, we
used timescale as an indirect proxy for straightness. Future
work will clarify this relationship, helping to situate our find-
ings within cognitive neuroscience and bridge temporal and
geometric accounts of prediction.
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