What are the best features to decode the levels of working memory load from
ECoG data?
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Abstract

This study aims to decode the three levels of work-
ing memory load in n-back task (0-back, 1-back and 2-
back) from ECoG data, utilising different feature selec-
tion strategies using regularised logistic regression. The
results demonstrated that feature strategies based on
common electrodes across subjects yielded the high-
est classification accuracies within individualized mod-
els, followed by selection of specific brain regions, com-
bined with data-driven methods. We also employed
time-frequency analysis to differentiate potential neural
markers. The results showed that low-frequency oscil-
lations carried the most discriminative information. Fur-
thermore, our findings indicate that the neural signa-
ture of working memory load varies between participants,
yet certain cross-participant features appear to be con-
served. Overall, effective feature selection may enhance
both the interpretation of workload-related neural activity
and the performance of simple algorithms.
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Introduction

Working memory (WM), critically associated with cognitive
ability, has been a focal point in psychological research, with
numerous paradigms developed to assess it. One notable ap-
proach is the n-back test, which has proven effective in mea-
suring varying cognitive load (He et al., 2023). Furthermore,
various approaches have been used to examine how the brain
encodes information and to uncover the mechanisms under-
lying working memory (Oberauer et al., 2018); among them,
empirical studies using the n-back task have provided signif-
icant insights into WM'’s underlying neural substrates (Zhang
et al,, 2018; Satake et al., 2024).

One way to investigate these neural substrates in the n-
back task is using machine learning (ML) techniques com-
bined with electrophysiological modalities. For instance, the
employment of ML algorithms has demonstrated effectiveness
in predicting mental workload (Mandal et al., 2020). However,
unlike ECoG, EEG has low spatial resolution and is more sen-
sitive to the participant’s movements (Erez et al., 2021; Trem-
mel et al., 2019). Moreover, studies have primarily focused on
differentiating between two states of mental load (e.g., 1-back
vs 3-back: Zhang et al., 2019).

Working memory load is reflected in specific frequency pat-
terns, which can serve as important neural markers of cogni-
tive demand. Alpha reduction and theta increase have been
linked to cognitive workload, with alpha reflecting mental effort
and theta correlating with higher task demands, especially in
frontal regions during working memory tasks (Pfurtscheller et
al., 1996; Klimesch, 1997; Jensen & Tesche, 2002). Delta ac-
tivity is often associated with attentional effort (Harmony et al.,
1996). Together, these findings suggest that changes in alpha
and theta bands offer valuable insights into how the brain dy-
namically responds to varying levels of working memory load.

In the current study, we aimed to decode task difficulty, a
proxy for working memory load, from frontoparietal electrocor-
ticography (ECoG) data collected from three subjects during
an n-back memory task (0-back, 1-back, and 2-back). Specif-
ically, we assessed the influence of different features, which
are electrodes with the highest L2 distances, electrodes in
the frontal lobe, and those shared on all subjects, on mental
load classification. Additionally, we examine time-frequency
dynamics and explore frequency bands that may be signifi-
cant to decode working memory load. Our study is unique
in three ways. First, ECoG provides higher spatial resolution
compared to EEG. Second, we explore a range of ECoG-
derived features. Finally, ECoG data is rarely used in the
existing literature for this purpose, and we demonstrate that
simple models with informative features may be sufficient for
decoding cognitive load.

Methods

We tested several feature selection strategies to decode work-
ing memory load from neural activity in the frontoparietal cor-
tex, achieving above-chance accuracy across three subjects.
These strategies included data-driven methods (selecting
electrodes with the highest L2 distances between n-back la-
bels, overlapping electrodes across subjects), spatially-driven
methods ( frontal lobe electrodes and Brodmann area parcel-
lations), and randomly selected electrodes as control. The
ECoG dataset (Miller, 2016) was preprocessed by applying
a 50 Hz high-pass filter, computing the power envelope, and
normalizing the channels. We used regularized logistic re-
gression for decoding, and data is split into trials and divided
into 80% training and 20% testing sets. Decoder performance
was assessed by measuring the accuracy for classifying task
type, i.e., 0-back, 1-back, or 2-back. Model selection used



cross-validation to evaluate logistic regression with varying C
values (L2 penalty). The best C, yielding the highest average
accuracy, was chosen for the final model fitting.

Additionally, we performed Power Spectral Density (PSD)
analysis across 64 EEG channels within a 2000 ms window
(-400 ms to 1600 ms) relative to stimulus onset, using time-
frequency decomposition to examine spectral characteristics
under different working memory load conditions (0-back, 1-
back, and 2-back).

Results and Discussion

Table 1 demonstrates the accuracy results from the regular-
ized logistic regression model for 5 feature strategies. The
use of common electrodes between all subjects revealed the
best accuracy result within individualized models of each sub-
ject, respectively, 78.33%, 61.67%, and 41.67%, followed by
the use of electrodes within the Frontal lobe (65.00%, 68.33%,
26.67%) and electrodes with the highest L2 distances be-
tween 0-back, 1-back, and 2-back (65.00%, 61.67%, and
26.67%).

Table 1: Regularized Logistic Regression Model Accuracies
corresponding to each feature for three subjects

Features Subject1 Subject2 Subject 3
Electrodes with highest 65.00% 61.67% 26.67%
L2 distances between

n-back labels

Common electrodes be- 78.33% 61.67% 41.67%
tween all subjects

Electrodes from the 65.00% 68.33% 26.67%
Frontal lobe

Electrodes from Brod- 40.00% 66.67% 28.33%
mann Areas

Randomly selected 55.00% 64.00% 28.00%
Electrodes

For these three best feature sets, Figure 1A, 1B, and 1C
indicate how accurately the model predicted each n-back con-
dition by comparing the true and predicted labels. Both data-
driven features (common electrodes) and spatially informative
regions (such as the frontal lobe) reveal their potential for clas-
sifying working memory load from EcoG data.

Furthermore, the time-frequency analysis revealed that
lower frequency bands, delta (0.5-4 Hz), theta (4-8 Hz), and
low alpha (8—-10 Hz) carried the most discriminative informa-
tion across all n-back levels. Notably, we observed a sig-
nificant increase in power following stimulus onset, peaking
around 800 ms. This increase was most prominent in the
lower frequency range and gradually declined over time, yet it
remained distinguishable between the different working mem-
ory load conditions. These temporal and spectral dynamics
(particularly in alpha and theta bands) support the previous
research (Harmony et al., 1996; Pfurtscheller et al., 1996;
Klimesch, 1997; Jensen Tesche, 2002) and suggest that early
post-stimulus low-frequency activity may serve as a reliable
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Figure 1: Classification metric: Confusion Matrices for subject
1, A. Electrodes with highest L2 Distances between n-back
label B. Only electrodes in Frontal Lobe and C. Commonality
of electrodes between all subjects.

neural marker for decoding working memory load.
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Figure 2: Power Spectral Density of Subject 1 for 0-back, 1-
back, and 2-back, respectively. Red lines represents the onset
of the stimuli presentation. In the color bar, yellow color repre-
sents the highest power spectral density.

Conclusion

This study highlights the importance of feature selection in de-
coding working memory loads from EcoG signals with sim-
ple algorithms. Additionally, low-frequency activity (0-10 Hz),
particularly theta and low-alpha, was found distinct across n-
back levels. Future work should explore integrating these ap-
proaches for fusion models for decoding and expanding the
subject pool to develop a more robust framework.
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