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Abstract
The homeostasis of internal bodily states is essential for
animal survival. In computational neuroscience, Homeo-
statically Regulated Reinforcement Learning (HRRL) has
been proposed as a theoretical framework for modeling
the learning of behavior in agents that maintain home-
ostasis through trial and error. HRRL assumes the ex-
istence of the dynamics within the agent and defines re-
wards based on its internal state. However, it remains
unclear what kinds of behavioral learning are enabled by
such internally defined rewards. In this study, we hypoth-
esized that when dealing with such internally defined re-
wards, agents can acquire meta-reinforcement learning
(meta-RL) capabilities by incorporating multimodal inputs
and recurrent connections into the policy network archi-
tecture. Numerical experiments suggested that the pro-
posed architecture enable the HRRL agent to acquire ex-
ploratory behaviors in the environment, indicating that
meta-learning abilities comparable to those found in pre-
viously known meta-RL approaches can be achieved us-
ing different architectures.
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Introduction
Maintaining internal bodily states within an appropriate
range—homeostasis—is a critical ability for animal survival
(Hull, 1943; Ashby, 1952). While reinforcement learning (RL)
models in decision-making serve as powerful frameworks for
modeling cognitive processes, rewards in these models are
typically introduced as free parameters. How such rewards
are grounded in autonomous agents, such as animals, re-
mains an ongoing topic of discussion (Juechems & Summer-
field, 2019; Yee, 2024). Homeostatically regulated RL (HRRL)
is a framework proposed in computational neuroscience that
models the learning of animal behavior based on motiva-
tion derived from homeostatic regulation (Keramati & Gutkin,
2011). As in standard RL, HRRL models the interaction be-
tween the agent and its environment as a partially observable
Markov decision process (Kaelbling, Littman, & Cassandra,
1998). The agent receives a (possibly multimodal) observa-
tion x from the environment and then selects an action a ac-
cording to its policy π. This action causes the environment
to transition to a new state, after which the agent receives a
new observation x′ and a scalar reward r ∈ R. The objec-
tive of RL is to obtain an optimal policy π∗ that maximizes
the expected cumulative future reward ∑

∞
t=0 γtrt , based on the

agent’s experience of interacting with the environment. Here,
γ < 1 is a positive discount factor that reduces the weight of
future rewards. Unlike standard RL, HRRL assumes that the

Figure 1: Correspondence between HRRL and meta-RL.

agent possesses a body and receives interoceptive input xi,
which reflects its internal bodily states. Rewards in HRRL are
computed based on the time series of xi. A drive function
D(xi) > 0 is introduced to evaluate the desirability of internal
states. This function is typically defined based on the agent’s
physiological characteristics and measures the distance be-
tween a fixed set point xi

∗ and the current interoception xi.
Accordingly, HRRL defines the reward to be proportional to
the change in the drive function: rt+1 = k

[
D(xi

t)−D(xi
t+1)

]
,

where k is a positive constant.

Minimal Architecture for meta-RL in HRRL
Wang et al. proposed a form of meta-reinforcement learn-
ing (meta-RL) in the context of deep reinforcement learning
(deep RL), in which specific neural architectures induce ad-
vanced cognitive processes—such as exploration and one-
shot learning—within the network, enabling the agent to re-
tain adaptive capabilities to the environment even after training
(Wang et al., 2016, 2018). In this work, we focus on the po-
tential correspondence between meta-RL and HRRL (Figure
1). Specifically, meta-learning capabilities in meta-RL require
access to external observations xt , the most recent action se-
lection at−1, the most recent reward rt−1, and a recurrent con-
nection within the architecture. These multimodal observa-
tions are thought to correspond, respectively, to exteroception
xe, proprioception xp, and interoception xi in HRRL (Yoshida,
Daikoku, Nagai, & Kuniyoshi, 2024). Because the reward is
defined as a function of the interoceptive sequence, xi implic-
itly encodes information about the reward signal. Therefore,
incorporating a recurrent layer into the model architecture of
an HRRL agent may be sufficient to induce meta-learning ca-
pabilities by implicitly acquiring the mapping from interocep-
tion to the most recent reward.

Experiments
To examine our hypothesis, we conducted computational ex-
periments using a simple non-stationary bandit task designed
to maintain the agent’s homeostasis (Figure 2). In this exper-
iment, the environment requires the agent to sustain home-



ostasis in a one-dimensional energy state by consuming food
from a multi-armed bandit with three non-stationary arms. If
the agent selects the arm containing food, it receives the food
with a probability of 0.9; otherwise, no food is provided. The
location of the food is assumed to change with a small prob-
ability (p = 0.01). The agent monitors its own energy state
through interoception xi. The energy state is updated ac-
cording to the following simple metabolic dynamics: xi

t+1 =

xi
t −α+βIt .

Here, α = 0.05 represents the energy change due to the
agent’s metabolism. β = 0.12 is a constant representing
the energy inflow when the agent consumes food. It is an
event function that takes the value of 1 when food is con-
sumed and 0 otherwise. The drive function was defined as
D(xi) = (xi − xi

∗)
2, with the set point as xi

∗ = 0. We used
k = 100 to define the homeostatic reward. Furthermore, to fa-
cilitate the visualization of behavior, a small constant penalty
was applied to all actions except the resting action. The maxi-
mum survival step in the environment was set to 2,000 steps.
If the energy level exceeded the range |xi| < 1, both the en-
vironment and the agent were reset (death). If the agent
reached the maximum number of time steps, the environment
was also reset. For comparison, the network’s weight param-
eters were fixed at regular learning step intervals, and the sur-
vival time (episode length) was measured during test trials.
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Figure 2: Overview of the experiment.

Agent architecture The proposed model architecture
(meta-HRRL) consisted of a fully connected layer with a ReLU
activation function (Krizhevsky, Sutskever, & Hinton, 2012) for
input embedding, followed by a recurrent layer implemented
with LSTM (Hochreiter & Schmidhuber, 1997). The LSTM’s
hidden state was mapped to produce the policy π and a
value prediction Vπ. The agent was trained using PPO algo-
rithm (Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017).

Figure 3: Proposed ar-
chitecture

As a variation of the network
structure, we compared per-
formance using a sequence
of interoceptive inputs, x̄i ≜[
xi

t−K+1, . . . ,x
i
t
]
, with K = 1 or

4, resulting in the final obser-
vation defined as obs ≜ [x̄i

t ,x
p
t ],

where proprioception is the pre-
vious action xp

t = at−1
1. As a

baseline for HRRL without meta-
RL capability, we also evaluated
a structure that excluded proprioception, i.e., obs ≜ [xi

t ].

1In the case of HRRL, exteroception is not present in this task.
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a Main results

b Example behavior of meta-HRRL c Example behavior of HRRL

Figure 4: Overview of the results. Results in the panel a are
the average of 20 trials and 95% confidence interval.

Additionally, we compared the performance of a conven-
tional meta-RL agent, which received the observation obs ≜
[xi

t ,at−1,rt−1], as a performance upper bound.

Results
Figure 4a illustrates the test performance in terms of episode
length. As expected, the simple HRRL agent failed to achieve
long-term survival in the environment. In contrast, the meta-
RL architecture quickly reached the maximum episode length,
indicating the acquisition of efficient exploratory behaviors.
The results of our proposed architecture demonstrated supe-
rior performance compared to HRRL, regardless of whether
the stack size was set to K = 1 or 4. This supports our hypoth-
esis that the agent successfully acquired meta-RL capabilities.
Additionally, a larger stack size yielded better results. This
suggests that increasing the stack size facilitates the acquisi-
tion of information equivalent to the reward signal, as home-
ostatic rewards are inherently evaluated based on interocep-
tion over two time steps. Figures 4b and 4c show examples
of the behavior of meta-HRRL (K = 4) and HRRL agents, re-
spectively. As demonstrated in the top panel, the meta-HRRL
agent adapts to the changing food location (pale solid line)
and adjusts its action selection (black dots), successfully con-
trolling its internal state even in a dynamic environment (bot-
tom panel). In contrast, the simple HRRL agent is able to
survive only when food happens to appear consistently in a
specific arm.

Concluding Remark and Discussion
This study experimentally demonstrated that, in HRRL, agents
with multimodal inputs and recurrent structures can acquire
meta-RL capabilities. The results also indicated that the con-
ventional meta-RL architecture achieves higher learning effi-
ciency. Humans are sometimes capable of perceiving reward-
ing stimuli as conscious experiences (Berridge & Kringelbach,
2008). This ability to perceive rewarding stimuli as part of a
multimodal observation may contribute to enhanced learning
efficiency in situations where advanced cognitive behaviors,
such as exploration, must be acquired through learning.



Acknowledgments
This research is supported by Japan Society for the Promo-
tion of Science KAKENHI grant 24K23892. Figure 1-3 were
created using BioRender.com.

References
Ashby, W. R. (1952). Design for a brain. Wiley.
Berridge, K. C., & Kringelbach, M. L. (2008). Affective neuro-

science of pleasure: reward in humans and animals. Psy-
chopharmacology , 199, 457–480.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8), 1735–1780.

Hull, C. L. (1943). Principles of behavior: An introduction to
behavior theory. New York: Appleton-Century-Crofts.

Juechems, K., & Summerfield, C. (2019). Where does value
come from? Trends in cognitive sciences, 23(10), 836–
850.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998).
Planning and acting in partially observable stochastic do-
mains. Artificial intelligence, 101(1-2), 99–134.

Keramati, M., & Gutkin, B. S. (2011). A reinforcement learning
theory for homeostatic regulation. In Advances in neural
information processing systems (pp. 82–90).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25, 1097–1105.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov,
O. (2017). Proximal policy optimization algorithms. arXiv
preprint arXiv:1707.06347 .

Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D.,
Soyer, H., Leibo, J. Z., . . . Botvinick, M. (2018). Prefrontal
cortex as a meta-reinforcement learning system. Nature
neuroscience, 21(6), 860–868.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo,
J. Z., Munos, R., . . . Botvinick, M. (2016). Learning to
reinforcement learn. arXiv preprint arXiv:1611.05763.

Yee, D. M. (2024). Neural and computational mechanisms of
motivation and decision-making. Journal of Cognitive Neu-
roscience, 36(12), 2822–2830.

Yoshida, N., Daikoku, T., Nagai, Y., & Kuniyoshi, Y. (2024).
Emergence of integrated behaviors through direct optimiza-
tion for homeostasis. Neural Networks, 177 , 106379.


