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Abstract

Humans excel at learning abstract structure from lim-
ited data and applying it to novel situations—a capacity
often attributed to meta-learning. While behavioral ev-
idence supports this ability, the neural mechanisms by
which abstract concepts are acquired and refined during
learning remain unclear. In this study, we use magne-
toencephalography (MEG) to examine how the brain dy-
namically constructs abstractions while learning a set of
tasks generated with a compositional grammar. Through
MEG decoding, our results show evidence of learning
the grammar structure across multiple timescales, both
within and across different trials. These findings provide
neural evidence for meta-learning in humans, showing
that abstract representations emerge during learning.
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Introduction

The brain has an impressive capability of learning from a
sparse amount of data and generalizing our experiences to a
wide variety of concepts . Psychologists have long suggested
that this ability relies on forming “generalizing abstractions” by
identifying patterns across experiences (Hull, 1920). Meta-
learning formalizes this idea, showing how abstract concepts
learned across tasks can accelerate future learning (Wang,
2021). However, most studies on task-specific abstraction fo-
cus on behavior alone (Barack, Bakkour, Shohamy, & Salz-
man, 2023; Braun, Mehring, & Wolpert, 2010; Gershman,
Blei, & Niv, 2010), while neuroscientific studies often record
brain activity only after participants have already mastered the
task (Schwartenbeck et al., 2023; Bernardi et al., 2020; Tafa-
zoli et al., 2024). This leaves a gap in understanding how new
abstract concepts form during learning at the neural level.

In this study, we study how humans naturally meta-learn
new abstract concepts when engaged in tasks that have com-
mon structure. Specifically, we propose that humans implic-
itly improve their learning efficiency by inferring the underlying
generative model of their experiences. To test this, we em-
ploy magnetoencephalography (MEG) to record brain activity
while participants engage in a family of tasks that are gener-
ated through an abstract compositional grammar. Our results
show neural evidence of humans learning the underlying gen-
erative grammar to improve their performance over the course
of the experiment.

Method

We used a compositional generative grammar to create struc-
tured two-dimensional binary grids (“boards”) with red and
blue tiles. This grammar allows for the generation of stim-
uli that vary in complexity and structure, including tree, loop,
and line-like patterns (Fig. 1ABC). Each board was generated
through recursive production rules, resulting in a distribution

of samples that varied in both structure and size (see exam-
ples in Fig.1C). Following Kumar et al.(2021), we designed a
task in which participants viewed a “covered” version of each
board (e.g., all tiles initially grey) and revealed tiles one at a
time by clicking. Their goal was to uncover all red tiles while
minimizing the number of blue tiles revealed.

We first validated learning in a behavioral pilot with 25 par-
ticipants in each condition (compositional and metamer), each
completing 24 tile-revealing trials. Compositional boards were
generated from a structured grammar designed to reflect ab-
stract concepts (tree, loop, and line). Following prior work
(Kumar et al., 2021), the metamer boards matched the com-
positional boards in low-level statistics but lacked any appar-
ent high-level structure (Fig.1C). Consistent with previous find-
ings (Kumar, Dasgupta, Cohen, Daw, & Griffiths, 2021), par-
ticipants performed significantly better in the compositional
condition than in the metamer condition (Fig.1D), suggest-
ing stronger learning when abstract structure was present
(Fig. 1E). However, these results alone cannot determine
whether participants learned the true underlying grammar or
formed other sufficient abstractions to support performance.

To study the neural basis of abstraction learning, we re-
cruited participants to complete the same task while under-
going MEG scanning. Each trial began with a random red tile
revealed. Participants used a MEG-compatible keypad to nav-
igate the board with directional keys and pressed a separate
key to reveal tiles. They earned one point for each new red
tile uncovered and lost one point for revealing a white tile. Tri-
als lasted up to 15 seconds, with a visible countdown bar. If
completed early, the board remained visible for the rest of the
trial; otherwise, the full board was shown for 1 second at the
end. Each participant completed 12 blocks of 10 trials and
was compensated based on performance.

MEG Setup In this study, we used a whole-head KIT MEG
system equipped with 157 axial gradiometers, sampled at 1
kHz from n = 5 subjects.

Decoding Analysis To assess whether participants en-
coded the compositional structure of the generative rule dur-
ing learning, we decoded two features from the MEG data: (1)
the grammar rule used to generate each board (chain, tree,
or loop; Fig. 1B), and (2) the board’s generative size (small,
medium, or large), based on the number of rule applications
in the generative process. For example, two loops or a chain
with three tiles is considered small, while four loops or a tree
with four expanded branches is considered large. Decoding
focused on a 1-second window surrounding each correct re-
veal event (i.e., when a red tile was uncovered). At each time-
point within this window, we trained a logistic regression clas-
sifier using a Leave-One-Trial-Out cross-validation approach.
To prevent overfitting, we apply L2 regularization, with the reg-
ularization parameter selected via a nested cross-validation
loop within the training set.
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Figure 1: A Novel Compositional Grammar for Board Stimuli. (A) Grammar symbols and (B) production rules. There are
three different rules to produce progressively more complex grid structures, and each rule produces a qualitatively different grid
structure. These structures can vary in size based on how many times that grammar rule is applied. At the start state, one of the
three grammar rules is randomly chosen and applied. This grammar rule is continuously applied until random termination. (C)
Example compositional grammar samples vs metamer samples using the same process to generate metamers. (D). Performance
of humans and artificial agent on the compositional grammar boards vs metamer boards. The performance metric is based on
the number of white tiles revealed, so lower is better. Error bars are 95% confidence intervals over different participants (human),
and baseline model runs. (E) Humans learn significantly over the course of the experiment (indicated by correlation between

trial number and performance), more so for compositional tasks than metamer tasks (p=0.0006).

Results and Discussion
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Figure 2: (A) Decoding accuracy for grammar rule classifica-
tion over a 700 ms window aligned to each participant’'s ac-
tions (i.e., revealing a red tile). Solid lines indicate the mean
decoding accuracy across participants, smoothed over time;
shaded error bands represent the standard error of the mean.
The dashed horizontal line indicates the chance level (33 %).
Decoding accuracy for the latent grammar rule increases pro-
gressively across sequential reveal actions within a trial. Time
is aligned such that 0 ms to the trial start (when the grid is
displayed). (B) Grammar rule decoding accuracy after the
third reveal action, separated by trial progression. The red
line shows the mean decoding for the first ten trials; the blue
line shows the mean decoding for the last ten trials. (C) De-
coding accuracy for generative size classification within trials.
(D) Decoding accuracy for generative size across trials. For-
mat and conventions follow panels A and B.

To examine how decoding accuracy evolves at each step
within a trial, we analyzed performance separately for each
reveal action. We found that decoding accuracy for grammar
rule identity increased within trials as participants revealed
more tiles (Fig. 2A-B), with accuracy rising above chance.
Early in the trial, decoding was not reliable: the first reveal
was significantly below chance (M = 0.319, t = —-2.17, p =
.0305), and reveals 1-3 were not significantly different from
chance (p > .35). Accuracy improved starting at the fourth re-
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veal (M =0.351,¢t=2.98, p =.0031) and became highly sig-
nificant by the fifth (M = 0.369, t = 3.70, p = .0003), indicat-
ing that structure becomes more decodable as information ac-
cumulates. A linear mixed-effects model confirmed this trend,
showing a significant effect of reveal sequence on decoding
accuracy (B = 0.009, 95% CIl = [0.006, 0.012], p < .0001).

Although we also hypothesized that decoding accuracy
would improve across trials, this effect was not statistically
supported in our current data (Fig 2B ; B = 0.0001, 95% CI =
[-0.0001, 0.0003], p = .296). Though this may be because of
our modest sample size and the fact that fatigue may have lim-
ited our across-trial learning effects. Prolonged tasks can lead
to performance decline, potentially masking improvement. Fu-
ture work will quantify fatigue using behavioral accuracy or re-
action times, and may restrict analyses to early, low-fatigue
trials or shorten experimental sessions to reduce its impact.

A similar pattern emerged for decoding generative size. Us-
ing a separate decoder, we found a significant increase in ac-
curacy within trials (B = 0.0226, 95% CI = [0.0189, 0.0262],
p < .0001; Fig.2C), and a marginal improvement across trials
(B =0.042, 95% CI = [0.0002, 0.0841], p = .057; Fig.2D).
While the across-trial effect did not reach conventional signif-
icance, the trend suggests participants may gradually learn
size-related abstractions over time. Decoding of size was
already above chance at trial onset and increased steadily
thereafter. One plausible explanation is that participants could
infer information about the generative size even before any
tiles were revealed.

In summary, this study examined how humans acquire task-
specific abstract concepts by decoding compositional struc-
ture from MEG data during learning. We can decode both the
grammar rule and the generative size of the stimuli from neural
signals. Decoding accuracy increased within trials, suggesting
that participants incrementally constructed internal represen-
tations of the underlying structure as they gathered evidence.
These results provide neural evidence for the dynamic forma-
tion of abstract concepts, supporting theories of hierarchical
and compositional inference in human cognition.
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