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Abstract 
The function of temporal coding in the brain remains 
controversial, with debate centering on the following 
question: does spike timing information, such as 
their temporal synchrony, play a meaningful role in 
neural computation which cannot be attributed to 
firing rate? We propose the solution to this dilemma: 
spike synchrony provides crucial information about 
stimulus familiarity under conditions when the firing 
rate alone is insufficient − namely, when the input 
stimulus is varied in saliency. Using simulations of 
recurrent spiking networks, we show that synchrony 
is particularly effective in distinguishing familiar 
stimuli of low saliency from novel stimuli of high 
saliency − an important distinction for both 
biological perception and artificial agents navigating 
dynamic environments. Synchrony is more sensitive 
to recurrent connectivity, that encodes prior 
experiences, compared to input firing rate. This 
highlights the relevance of synchrony for familiarity 
encoding in a scenario of realistic input variability. 
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Introduction 

Spike synchrony is a highly debated form of temporal 
coding. Researchers view it either as a mechanism 
binding input features into coherent representations 
(Roelfsema et al., 1996; Singer, 1999) or simply as a 
byproduct of firing activity (Shadlen & Movshon, 1999). 
Others propose that synchrony functions as a 
mechanism for coincidence detection (Abeles et al., 
1991), working memory (Szatmáry & Izhikevich, 2010), 
invariant input coding (Brette, 2012), or relevant stimulus 
selection (Fries et al. 2002). A recent perspective 
suggests synchrony acts as a familiarity detector 

(Korndörfer et al., 2017; Zemliak et al., 2024). Familiarity 
memory is essential for adaptive behavior in both living 
and artificial agents, enabling efficient decision-making 
based on prior experience.  

Using simulations of recurrent spiking networks, 
we identify the conditions under which non-oscillatory, 
connectivity-driven synchrony carries crucial information 
which cannot be decoded from rate alone: it reliably 
detects familiar stimuli of varied saliency. Rather than 
replacing rate coding, synchrony complements it: rate 
points to the relevant neuron population, and synchrony 
detects familiarity from its activity. 

Stimulus meta-information 

Stimulus saliency and familiarity are two kinds of 
meta-information about incoming stimuli. They don’t 
convey information about the specific content of 
perceptions, such as which objects are depicted on an 
image, but rather provide a higher-level context about its 
relevance for processing and decision making. 

In our study, saliency is defined as input firing 
rate, reflecting bottom-up sensory characteristics of 
static stimuli, such as contrast and intensity. Note that in 
many spiking models feedforward inputs are represented 
as Poisson processes with constant firing rates. We 
argue that only in the context of variable stimulus 
saliency reflected in input firing rates, does spike 
synchrony exercise its computational potential, since it 
can reliably detect a different type of contextual 
information − input familiarity.  

Following theoretical computational models, we 
encoded familiarity in recurrent connections (Korndörfer 
et al., 2017; Zemliak et al., 2024), as in the brain they 
reflect the acquired visual experience, and often 
experienced stimuli can be interpreted as familiar. At the 
same time, recurrent connection strength increases 
spike synchrony (König et al., 1993; Stettler et al., 2002). 
Therefore, synchrony serves as a proxy to infer stimulus 
familiarity from firing activity (Korndörfer et al., 2017; 
Zemliak et al., 2024).  



Results 
In our experiments, we randomly varied input saliency, 
and the network had to classify its familiarity. We 
developed two models for familiarity detection: (i) a 
network with V1-like connectivity (consistent with Cossel 
et al., 2015; Hage et al., 2022; Znamenskiy et al., 2018; 
Taylor et al., 2024) and (ii) an abstract associative 
memory model. Both models were spiking recurrent 
networks (SNNs) composed of LIF neurons, receiving 
feedforward external, recurrent excitatory and noisy 
background input. For familiar inputs, Poisson 
feedforward input was administered to strongly 
connected clusters of neurons, and for new ones − to 
weakly connected groups. Connectivity was predefined 
beforehand and included strongly connected ensembles, 
as well as cross-ensemble inhibition. For each data 
sample, the input rate was drawn from a uniform range 

of possible input firing rates, which represented saliency 
variability. For the V1 model, we tested different 
variability: 0 (fixed input rate 50 Hz), 10 (40-60 Hz), 20 
(30-70 Hz), 30 (20-80 Hz), 40 Hz (10-90 Hz), and for the 
abstract model all experiments were performed for the 
range of 10-90 Hz (Fig. 1A). A single dataset included 
320 stimuli: 160 familiar and 160 new. 

To predict whether a stimulus was new or 
familiar, we used the activity of stimulated neurons in 
response to it. We employed binary logistic regression, 
using either firing rate or spike synchrony statistics as 
predictors. Firing rate was computed as average spike 
count (SC), and spike synchrony as Rsync (Eq. 1). 

         (1) 

 

Figure 1: Familiarity detection. A. 10-fold cross-validation performance on familiarity detection from synchrony or 
spike count. Average result with standard deviations across 20 iterations, 320 samples each. Results for the V1 
model are presented for various levels of saliency (input rate) variability, for the associative memory model − for 
highest (10-90 Hz) variability and for increasing memory load (number of pre-encoded patterns).  B. KDE plots of 
synchrony and spike count of stimulated neurons in response to new and familiar stimuli in the V1 model. C. 
Spike raster plots of 500 ms of the V1 model activity in response to weak (10 Hz) and salient (90 Hz) stimuli. 

In both models, synchrony outperforms spike count as a 
measure of stimulus familiarity when input salience 
varies. Thus, spike synchrony responds more to 
recurrent connections than input rate, while output rate 
fails to separate these contributions. Our findings seem 
to contradict Zemliak et al. (2025), who found spike 
count outperforms synchrony for familiarity detection in 
recurrent networks. However, they used Poisson input 
with constant firing rates, while we show synchrony's 
advantage emerges with varying input rates that better 
reflect real-world visual input. This extends Brette's 
(2012) theory of synchrony for invariant coding.  

In the abstract model, both metrics show 
declining performance as the number of familiar patterns 
stored in the network increases. This effect aligns with 
Zemliak et al. (2025), who attribute it to growing overlap 
between clusters representing familiar patterns.   

Data and code availability 

All data was programmatically generated. Code for data 
generation, analysis and visualization can be found at 
https://github.com/rainsummer613/saliency-familiarity-mi
ni.  

https://www.codecogs.com/eqnedit.php?latex=%20Rsync%5Cleft(S%2CT%5Cright)%3D%5Cfrac%7B%5Cwidehat%7BVar%7D%5Cleft%5B%5Cleft%3CA_i(t)%5Cright%3E_%7Bi%5Cin%26space%3BS%7D%5Cright%5D_%7Bt%5Cin%26space%3BT%7D%7D%7B%5Cleft%3C%5Cwidehat%7BVar%7D%5Cleft%5BA_i(t)%5Cright%5D_%7Bt%5Cin%26space%3BT%7D%5Cright%3E_%7Bi%5Cin%26space%3BS%7D%7D%20#0
https://github.com/rainsummer613/saliency-familiarity-mini
https://github.com/rainsummer613/saliency-familiarity-mini
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