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Abstract
Patch foraging—deciding when to leave a depleting re-
source to search for alternatives—is a fundamental as-
pect of animal behavior and offers a window into etho-
logically grounded decision processes. Several theories,
most notably the Marginal Value Theorem (MVT), have
proposed strategies for optimal foraging. However, they
typically ignore most details of the spatiotemporal struc-
ture of the environment, and particularly the dynamics
of the replenishment of patches. We investigate optimal
patch foraging with richer replenishment timescales. Us-
ing average-reward reinforcement learning (RL), we show
that under slow replenishment, optimal policies leverage
the world model to generate higher reward rates and dis-
tinct behavioral statistics from MVT and similar policies.
Our results provide testable predictions for future experi-
ments.
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Foraging in naturalistic environments
Foraging is one of the most widespread and evolutionarily
conserved behaviors observed across species, making it a
powerful window into the cognitive processes underlying nat-
ural decision making (Mobbs, Trimmer, Blumstein, & Dayan,
2018). One of the classic forms of foraging is patch foraging,
which assumes that food resources are distributed in discrete
patches (e.g., fruit bushes) across the environment. Patch
foraging can be described as a sequence of decisions as to
when to leave a depleting patch to search for better alter-
natives. The optimal policy for patch foraging is usually de-
scribed by MVT: an animal should leave a patch when its in-
stantaneous reward rate falls below the average reward rate of
the environment (Stephens & Krebs, 1986). While MVT has
been successful in describing foraging decisions under cer-
tain conditions, it fails to capture all the statistics of foraging
behavior (Kendall & Wikenheiser, 2022). In particular, it relies
on unrealistic assumptions, e.g., immediate replenishment of
a patch to its full capacity after an animal leaves it (or, worse,
enters a new patch). Moreover, MVT suggests that only know-
ing the environment’s average reward rate is sufficient to make
optimal decisions, discarding the spatiotemporal structure of
the environment. Here, we show that in the presence of re-
plenishment with realistic timescales, a complete model of the
environment is required to make optimal foraging decisions.
Specifically, we employ the average-reward RL framework to
find the optimal policy across various environmental statistics
and show that it can deviate substantially from MVT. Our re-
sults suggest model-based strategies are required for optimal
foraging in natural environments.

Environment and task structure
We consider an environment consisting of 3 patches i∈ {A, B,
C}, each with a specific depletion rate Di, replenishment rate
Ri, replenishment timescale τi, and maximum and minimum
reward probabilities pmax

i and pmin
i respectively. Our RL agent
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Figure 1: Impact of environment statistics on foraging
policies. a. Schematic for sequential patch foraging task.
Patches provide stochastic rewards with probabilities that de-
crease when they are exploited, and increase when they are
not. b. Comparing the average reward rate of the optimal pol-
icy with MVT (left) and single-threshold (right) policies. White
areas indicate regimes where MVT is impossible. τi = 3.

is presented with patches in sequential order, separated by
inter-patch-interval TIPI (Figure 1a, analysis can be extended
to the case where the patch order is not fixed but has Markov
dynamics). Each patch also contains discrete reward sites,
separated by inter-site-interval TISI. For simplicity, we assume
TIPI and TISI are constant. At each time-step t, the agent can
decide whether to exploit the current patch or leave. The state
of each patch is defined by the reward probability pt

i . Exploit-
ing a patch can result in a unit reward with probability pt

i , fol-
lowed by a handling time th for reward consumption, while a
leave decision gives zero reward. The reward probability of the
prevailing patch is depleted as pmax

i Dn
i , where n is the number

of received rewards. Meanwhile, the reward probability of non-
prevailing patches replenishes as pmax

i − (pmax
i − plast

i )Rt/τi
i ,

where plast
i is the patch state when it was last visited.

Defining policies
First, we find the optimal policy assuming that the agent has
complete knowledge of the environment statistics. We for-
mulate the foraging problem as a Markov Decision Process
(MDP). The states are defined as s(lt , pt

A, pt
B, pt

C), where lt

is the prevailing patch. The state transitions p(s′|s,a) are de-
fined based on the agent’s actions a ∈ {exploit, leave}, and
patch depletion and replenishment dynamics. We find the
optimal policy by using policy iteration to solve the average-
reward Bellman equation (Mahadevan, 1996),

V ∗(s)=maxa{r(s,a)−T (s,a)r̄∗+∑s′ p(s′|s,a)V ∗(s′)} .

Here, V ∗ is the optimal state-value function, r∗ is the optimal
average reward, and T (s,a) is the time it takes to perform
action a at state s: T (s,exploit) = TISI and T (s, leave) = TIPI.
For rewarded exploitation, th is added to T (s,a = exploit). All
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Figure 2: Policies have different behavioral predictions. Different policies obtain (a) distinct amounts of reward, visit distinct
patches and patch states with (b) different patch residence times (all simulations start from fully replenished environment i).

times are defined in relative terms; we assume th = 0.25TISI .
T (s,a)r̄∗ captures the opportunity cost of time during foraging.

We also define two suboptimal policies: (i) MVT: a self-
consistent policy with a leaving threshold equal to the average
reward; (ii) Optimal single threshold: a policy that maximizes
the average reward rate by applying a fixed leave threshold
across all patches.

Comparing different policies
We compare the three policies by their average reward rate,
visited patches and patch states, and the distribution of patch
residence times, across different environmental statistics. In
particular, we search for environment statistics that maximize
the difference in the average reward rate between policies. As
examples, here, we present the results in two types of envi-
ronments: (i) patches with heterogeneous maximum reward
probabilities pmax

i = {0.7,1,0.3} and (ii) uniform patch statis-
tics pmax

i = 0.7. We set Ri = Di = 0.9, pmin
i ≥ 0.2 and τi = 3

and perform a grid search on TIPI and TISI to find regimes with
maximum difference between policies.

We find that when the replenishment timescale is much
slower than the inter-patch interval (and to a lesser extent also
inter-reward-site interval), the optimal policy substantially de-
viates from MVT and single-threshold policies (Figure 1b for
environment i; qualitatively similar results for environment ii).
Under this condition, patches do not fully replenish until sub-
sequent visits, violating the MVT assumption. Thus, the agent
requires a richer model of the environment beyond the aver-
age reward rate to make optimal decisions, even when in a
uniform environment. Moreover, we find that single-threshold
and MVT policies deviate from each other, indicating that the
environment’s average-reward rate does not provide sufficient
information even for choosing an optimal single leave thresh-
old. The difference between the optimal and the other two
policies lies in its adaptive leave thresholds. Unlike MVT and
single-threshold policies that apply a fixed leave threshold
across all patches, the optimal policy adapts its leave thresh-
old according to the state of all 3 patches at each moment of

time. We also show that in certain environments, it would not
be possible to define a self-consistent MVT policy due to a
small overall average reward rate (and large pmin

i , white areas
in Figure 1b). Our results can generally be extended to other
parameter sets as long as TIPI is considerably smaller than τi.

Differences between policies provide testable behavioral
predictions. To illustrate this, we take an example environment
where policies have different average reward rates (environ-
ment i with τi = 3, TIPI = 0.625, TISI = 0.5). We find that poli-
cies not only obtain different amounts of reward, but also con-
sistently visit different patches and patch states (Figure 2a).
Furthermore, they exhibit different distributions of patch res-
idence times (time spent exploiting a patch). In our specific
example environment, the MVT policy almost skips patch C,
while the other two policies spend more time there (Figure 2b).
Such a striking difference provides a strong testable predic-
tion to distinguish between MVT and optimal policies in exper-
iments.

Our results demonstrate that under slow replenishment
timescales, foraging strategies informed by the world model
provide a higher reward rate and are optimal for survival.
Since slow replenishment is a realistic property of natural envi-
ronments, we hypothesize that animals learn the world model
and leverage it to inform their foraging decisions (e.g., using
model-based RL). In the next step, we plan to test this hypoth-
esis by testing mice in a naturalistic patch-foraging paradigm
designed based on our theoretical predictions.
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