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Abstract 
The brain undergoes significant developmental 
and functional changes over the lifespan, and 
certain features in brain functional organization 
may be more prominent in certain age groups 
than others. Due to individual differences in 
functional–anatomical correspondence, features 
encoded in fine-grained spatial patterns need to 
be functionally aligned using hyperalignment. In 
this work, we examine whether age-specific 
functional templates improve hyperalignment. 
We built age-specific templates using the 
Cambridge Centre for Ageing and Neuroscience 
(Cam-CAN) dataset (18–87 yo) and evaluated 
their performance. We found that congruent 
age-specific templates improve the performance 
of (a) predicting individualized connectomes, (b) 
predicting individualized brain responses during 
movie watching, and (c) inter-subject correlation 
of connectivity profiles. This work enhances our 
understanding of age-related differences in brain 
function, highlights the benefits of creating 
age-specific templates to refine hyperalignment 
model performance, and may contribute to the 
development of age-sensitive diagnostic tools 
and interventions for neurological disorders. 
 

Keywords: fMRI, hyperalignment, brain aging, 
individual differences, functional connectivity 

Introduction 
Different brains encode the same information as 
idiosyncratic spatial patterns. As a result, information 
encoded in fine-grained spatial patterns cannot be 
aligned using anatomical alignment (Cox & Savoy, 
2003; Haxby et al., 2001, 2014). Connectivity 
hyperalignment (CHA) solves this by projecting 
brains into a common connectivity space that 
preserves both coarse and fine detail (Guntupalli et 
al., 2018; Haxby et al., 2011, 2020), enhancing 

sensitivity to individual differences (Feilong et al., 
2018, 2021). 

In this work, we investigated whether incorporating 
age-specific templates enhances the performance of 
hyperalignment models. Our results indicate that 
congruent templates (i.e., constructed using data 
from the same age group) enhance inter-subject 
correlation (ISC) of functional connectivity and 
prediction accuracy of individual connectomes 
compared to incongruent templates. 

Predicting individualized connectome 
We classified the participants into three different age 
groups—young, mid, and old—with each group 
consisting of around the same number of people. 
Our analyses focused on the young and old groups. 
For each age group, we built the templates using 
two thirds of the participants (~144) and withheld the 
remaining one third for testing (~72). For each 
participant, we used independent data for training 
hyperalignment and evaluating performance (Figure 
1). 

For each individual, we calculated the correlation 
between the predicted connectome, generated using 
different age group hyperalignment templates, and 
the measured connectome, calculated using movie 
watching fMRI data. A higher correlation indicates a 
more accurate prediction, which means better 
performance of the hyperalignment template. 

We compared the performance of congruent and 
incongruent templates on Cam-CAN participants 
(Taylor et al., 2017). Congruent templates perform 
better than incongruent templates for both age 
groups (Figure 2a), and we observed the advantage 
in almost all participants (Figure 2b; 98.6% in the 
young group and 94.4% in the old group). The 
advantage of congruent templates is most prominent 
in frontal and parietal lobes (Figure 2c)—regions 
primarily responsible for cognitive functions—which 
can be significantly influenced by age. 

 

Figure 1: Schematic of the procedure for building and testing hyperalignment templates. 
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Figure 2: Comparison of prediction performance between congruent and incongruent templates. 

To evaluate the influence of age on the 
performance of hyperalignment template across the 
entire lifespan, we computed the correlation between 
actual connectome and predicted connectome of all 

participants using both young templates and old 
templates. As an individual's age becomes more 
distant from the template age group, the relative 
performance of the template decreases (Figure 3). 

 
Figure 3: Performance difference between young and old templates for individuals across all age spans. 

Additional Validation Analyses 
We extended the original analysis and demonstrated 
that congruent age-specific templates predict neural 
responses to the movie better than incongruent 
templates. We also found that inter-subject 
correlations (ISCs) of connectivity profiles based on 
congruent templates were higher than incongruent 
ones, for both the Cam-CAN dataset and the Dallas 
Lifespan Brain Study (DLBS) dataset. These results 
demonstrate that congruent age-specific templates 
outperforms incongruent ones across datasets and 
metrics. 

Conclusion 
In this paper, we analyzed the effect of age on 
hyperalignment performance and demonstrated the 
advantage of age-specific hyperalignment templates 
on predicting individualized connectomes, predicting 
brain response prediction during movie watching, 
and ISC of connectivity profiles. This approach could 
provide insights into the pathophysiological 
mechanisms underlying various clinical conditions 
and broaden the use of hyperalignment models in 
clinical neuroscience. 
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