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Abstract

Deep neural networks demonstrate a well-documented
simplicity bias—the tendency to learn simple functions
before acquiring more complex ones. This bias towards
simplicity is thought to enable overparameterized mod-
els to successfully generalize to unseen data rather than
overfitting to examples seen in training. Complementary
work in psychology has demonstrated human simplicity
biases in several domains. Here, we aim to unite these
two streams by comparing human and neural network
simplicity biases side-by-side in a Boolean classification
task. We demonstrate that both humans and models ini-
tially learn simple rules before mastering a more complex
function. We also provide evidence that human learners
rely on the simple functions they learned early on to clas-
sify out-of-distribution examples, suggesting that dynam-
ical simplicity biases are important for generalization.
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Introduction

Deep neural networks start by learning simple, often linear
models of the data (Kalimeris et al., 2019; Hu et al., 2020;
Rubruck et al., 2024) and the complexity of the learned func-
tion increases with training (Bhattamishra et al., 2023; Saxe et
al., 2019). A qualitatively similar phenomenon has been docu-
mented in human category learning, where cardinal rules are
learned before exceptions (Nosofsky et al., 1994). The current
work aims to explicitly connect the dynamical nature of sim-
plicity biases in biological and artificial learning. To this end,
we adapt a Boolean category learning task from Budiono et
al. (2024). We theorize that humans and neural networks will
be biased to learn simple functions early in training. Because
simplicity biases are thought to be foundational for generaliza-
tion in artificial learning (Bhattamishra et al., 2023; Kalimeris
et al., 2019; Rahaman et al., 2019), we additionally hypothe-
size that human learners rely on simple functions they learned
early on to generalize to out-of-distribution problems.

Methods
Behavioral Experiment

Boolean classification task. Participants (V = 87) were re-
cruited via Prolific and learned to classify bee stimuli (Fig 1A).
Each bee could be identified by a combination of three bi-
nary features: wing length, body pattern, and leg number.
In a design inspired by Shepard et al. (1961), participants
were tasked with learning classifications in which a simple rule
based on a single feature (e.g. short wings-good, long wings-
bad) could achieve above-chance accuracy, but could not cor-
rectly classify all stimuli. In learning trials, participants clas-
sified a bee and then received feedback on their choice (Fig
1B, left). Participants completed 48 blocks of learning in which
the eight unique bees were shown in randomized order. After
learning, participants completed a generalization phase with
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Figure 1: A. An example task learned by human participants.
Notice that a simple rule based on one feature can be used
to achieve above-chance accuracy. B. In learning trials, par-
ticipants categorize bees with feedback. In generalization tri-
als, each bee has one feature hidden and feedback is absent.
C. Binary inputs and outputs are used to train networks on
an abstracted version of the classification task. D. Cartoon
sketch of simple to complex learning. Each point represents
a 3-d stimuli and color represents its learned label. The left
cube represents responding ‘good bee’ or ‘bad bee’ with equal
probability. The middle cube represents reliance on a single
feature, and the rightmost represents using the true labeling
function from A.

no feedback where each bee had one feature hidden (Fig 1B,
right). Participants saw each generalization stimulus twice.

Assessment of simplicity We chose a Boolean classifica-
tion task in part due to the tools available to quantify the com-
plexity of such functions (O’Donnell, 2021). We focus on sen-
sitivity, a measure of how much the output of a Boolean func-
tion changes in response to "small” input perturbations. In-
tuitively, a simple function has low sensitivity because similar
inputs are likely to have the same output. Formally, given in-
puts x; € {0,1}" the sensitivity of a Boolean function for a
particular input is defined as s(f,x) = X} I[f(x) # F(x&N).
Here, x¥/ denotes the input that has a bit flip at position j and
I the indicator function.

Using an HMM to infer decision functions. To assess
the complexity of human decision functions, we need to in-
fer these function from participants’ choice data. In particular,
we need to be able to distinguish between random behavior,
which is expected at the start of learning, and the use of a
very complex labeling function. To achieve this, we fit a Hidden
Markov Model (HMM) to each participant’s choices. This anal-
ysis assumes that each choice is generated by an underlying
decision function, and that participants transition between dis-
tinct decision functions throughout learning. Therefore, each
hidden state of the HMM represents a decision function, and
its emission probabilities describe the probability of labeling
each stimulus as good or bad. HMMs were fit for each par-
ticipant using expectation-maximization, and used to infer the
decision function underlying the participants choice on every
trial. The number of hidden states (distinct decision functions)



was determined via model comparison using the Akaike infor-
mation criterion to penalize model complexity.

Modeling

We trained a two-layer feed-forward neural network to perform
our classification task. The data set consists of 3 dimensional
Boolean vectors x; € {0,1}3. We used the same labeling
functions learned by human participants for model training.
Our networks contain a single hidden layer of dimensions 20
with ReLU nonlinearities, and an output unit with sigmoid ac-
tivation. We train networks with squared error-loss and Adam
optimizer with a learning rate of .02 and small initial weights.

Results
Learning functions of increasing complexity

We first assess whether participants learn functions of in-
creasing complexity by looking at a heuristic measure, re-
liance on a simple rule based on one feature. If participants
follow a simple to complex trajectory, they should learn stimuli
that are correctly classified by the simple rule (central stimuli)
faster than those that are not (peripheral stimuli; nomenclature
adapted from Nosofsky et al. (1994)). Because some labeling
functions have more than one valid simple rule (e.g. it is possi-
ble to classify above chance by relying on just wing number, or
just body pattern), central stimuli are defined as those that are
correctly classified by all valid simple rules. We find that par-
ticipants learn central examples more quickly (Fig. 2A), which
is in line with work by (Nosofsky et al., 1994). Surprisingly, we
find that this same behavior is also displayed by simple neural
networks trained from scratch.

Next, we look at another, more generalizable measure for
function complexity over learning, Boolean sensitivity (see
methods). To do so, we fit an HMM for each participant to in-
fer the labeling function that generates their behavior on each
trial. We then compute the sensitivity of that labeling function,
and find that sensitivity increases over the course of learning
(Fig. 2B). We replicate the same result in our neural network
models by directly computing the sensitivity of model outputs.

Simplicity and generalization

We ask if participants rely on the simple rule they learned ini-
tially when generalizing to out-of-distribution stimuli. To do
so, we focus on problems where participants could have ini-
tially learned a simple rule based on any of the three fea-
tures. Additionally, we look only at participants whose perfor-
mance exceeded that of the simple rule by the end of learning
(> 87.5% accuracy in the last five blocks). For this analysis,
we had n = 20 participants who learned this particular rule
and reached the performance criterion. We find that reliance
on a feature during learning predicts reliance on that same
feature in generalization (Fig. 3). Learning reliance is average
accuracy in learning on stimuli that can be correctly classified
by a simple rule based on the relevant feature. Generaliza-
tion reliance is the proportion of generalization trials—where
the relevant feature is present—in which participants make
choices that align with the same simple rule.
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Figure 2: Humans and neural network models learn func-
tions of increasing complexity. Values are averaged over ev-
ery other block for humans and every five epochs for models.
Model results are averaged over 1000 runs. A. Humans and
models learn stimuli that are correctly classified by valid sim-
ple rules (central) faster than those that are not (peripheral).
B. Sensitivity of the Boolean functions used by humans and
models increases over the course of learning.
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Figure 3: The extent to which participants rely on a feature
during learning predicts their reliance on that feature in gener-
alization. Generalization reliance and learning reliance were
normalized to sum to 1 across features for each participant.

Discussion

In this work, we show that humans and neural network mod-
els learn functions of increasing complexity. We provide ev-
idence that humans rely on the simple rule that is initially
learned when generalizing, suggesting that dynamical simplic-
ity biases may influence human generalization. Future work
will assess whether our understanding of simplicity biases in
learning can be leveraged to design more effective curricula.
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