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Abstract1

Cognitive flexibility requires both retaining past knowl-2

edge (stability) and generalizing to new tasks. While at-3

tention mechanisms supporting this tradeoff have been4

studied, the complementary role of environmental struc-5

ture—richness and specifically connectivity—remains6

underexplored. We systematically examine how these7

factors affect performance in MLPs and in attention-8

based models. Our results show that richer, more con-9

nected environments enhance both generalization and10

stability, especially for attention models, highlighting the11

importance of architecture–environment interactions in12

multitask learning.13
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Introduction17

Biological and artificial agents operate in dynamic environ-18

ments where they must learn and switch between multiple19

tasks. This raises fundamental challenges in how knowl-20

edge is stored and shared across tasks. A key opportunity21

in multitask learning is the ability to generalize by reusing22

shared components. Both humans and neural networks ben-23

efit from forming shared task representations that support24

flexible transfer across tasks (Correa, Ho, Callaway, Daw, &25

Griffiths, 2023; Driscoll, Shenoy, & Sussillo, 2024; Johnston26

& Fusi, 2023; Yang, Joglekar, Song, Newsome, & Wang,27

2019). At the same time, sharing representations poses a28

risk: Learning new tasks can interfere with prior knowledge,29

a phenomenon known as catastrophic forgetting (De Lange,30

van de Ven, & Tuytelaars, 2023; French, 1999; Grossberg,31

1980; McCloskey & Cohen, 1989; McClelland, McNaughton,32

& O’Reilly, 1995; Kim & Han, 2023). This reflects a broader33

tradeoff between generalization and stability, where improving34

one often harms the other (Musslick & Cohen, 2021).35

While prior research has mainly focused on architectural36

solutions to address this tradeoff, we highlight the often-37

overlooked but complementary role of environmental structure38

(Dorrell et al., 2025; Saxe, McClelland, & Ganguli, 2019; Lee,39

Mannelli, Clopath, Goldt, & Saxe, 2022). We design a mul-40

titask environment defined by combinations of sensory and41

motor cues. We characterize this environment in terms of42

richness and connectivity and compare standard MLPs with43

novel attention-based models that dynamically select relevant44

information to mitigate forgetting (Hummos, 2023; Sommers,45

Thorat, Anthes, & Kietzmann, 2025; Verbeke & Verguts, 2022)46

on their ability to retain and generalize task information as a47

function of richness and connectivity.48

Methods49

Richness and Connectivity in the task structure50

Figure 1: Experimental design for Multi task. (a) Row 1: Multi-
4. The first regime has 4/8/12 tasks; the second regime has 4
new ones. Rows 2-3: Different levels of connectivity in the first
regime (Row 2), each with their corresponding graphs (Row
3). (b) Trial: sensory cue, motor cue, stimulus, response, feed-
back.

A Multi-n task structure is an environment with n sensory51

(e.g. color) and n motor (e.g., left hand) cues. Figure 1a illus-52

trates the Multi-4 task structure, combining 4 sensory and 453

motor cues into 42 = 16 tasks, each defined by one cue pair. A54

regime is a collection of jointly trained tasks; we distinguish the55

first regime (tasks trained first) from the second regime (tasks56

trained second). Each regime is divided into trials. Each trial57

(Figure 1b) includes a sensory cue, motor cue, stimulus, re-58

sponse, and feedback. Stimuli vary over 16 combinations;59

feedback guides learning of cue-stimulus-response mappings.60

To explore environmental factors, we used Multi-4 (Figure 1a61

top) with three richness levels in the first regime poor (4 tasks),62

middle (8), and rich (12). The second regime always includes63

4 new tasks not used during first regime training. Beyond rich-64

ness, we examine connectivity. 8 out of 16 tasks are selected65

for the first regime (Figure 1a middle). While many such se-66

lections are possible, we group regimes as equivalent if they67

differ only by cue relabeling or transposition. This yields 3268

unique regime configurations (Faradžev, 1978). Each regime69



forms a bipartite graph where cues are vertices and tasks are70

edges (Figure 1a bottom).A regime is connected if all cues are71

linked by paths; otherwise, it’s disconnected (see Figure 1a72

middle-bottom). Of the 32 unique regimes, 17 are connected,73

15 disconnected. Connectivity is quantified by average short-74

est path length (ASPL),which measures the average minimum75

steps between all cue pairs. Examples in Figure 1a middle76

show ASPLs of 2, 2.07 (connected) and ∞ (disconnected).77

Models78

Figure 2: Model architectures. (a) MLP: joint cue-stimulus
input. (b) Attention-Gating: cues filter stimulus. (c) Attention-
Concatenate: cue and stimulus merged. Lines: dotted = gat-
ing, solid = concatenation.

As a baseline, we used MLPs (Figure 2a) that process one-79

hot encoded sensory and motor cues along with stimuli (input80

24, output 8), with 3 and 4 dense layers, trained over 50×500081

trials using Adam, cross-entropy, Xavier initialization, and sig-82

moid activation functions. Attention models (Figure 2b–c) ex-83

tend MLPs with cue-guided attention: gating (cues modulate84

stimulus features via gates) or concatenation (cues merge85

with stimuli across layers). Both were tested with/without a86

bottleneck. Training matched MLPs.87

Results88

Models train on first regime with feedback, then generalize89

to second regime without feedback. After training on second90

regime, stability is tested on first regime without feedback. As91

all models reached 100% accuracy in both training phases,92

we focus on generalization and stability.93

For Multi-4 (Figure 3a rows 1-3), to analyze the impact of94

environment richness and connectivity on the model perfor-95

mance, we compare MLP 2 (selected for its superior perfor-96

mance among MLP models) and Concat 2 (representing at-97

tention models, as all attention models exhibit similar perfor-98

mance). First, we evaluate their generalization and stability99

across poor, middle, and rich environments(Figure 3a, rows100

1–3). Concat 2 outperforms MLP 2 in generalization and sta-101

bility, especially with limited training. Both improve with rich-102

ness, but only Concat 2 reaches 100% accuracy in rich set-103

tings.104

To test connectivity effects (Figure 3a, rows 4–7), MLP 2105

shows minor gains in connected regimes. Concat 2 performs106

well when connected (83–98% generalization, 98–100% sta-107

bility) but drops in disconnected ones, showing its reliance on108

Figure 3: Multi-4 results. (a) Concat 2 outperforms MLP 2
in both generalization and stability, especially in rich or con-
nected regimes. MLP 2 struggles in low-richness or discon-
nected settings. (b) MLP 2 shows weak correlation with con-
nectivity; Concat 2 generalization improves with higher con-
nectivity. Stability remains at ceiling. (Ctd = Connected; Dtd =
Disconnected)

structure.109

Figure 3b shows that Concat 2 generalization correlates110

strongly with connectivity (ASPL, r = 0.89), while MLP 2111

shows no clear pattern. Stability remains near ceiling for Con-112

cat 2, with weak correlations.113

Discussion114

We studied how cognitive architecture interacts with task115

structure in multitask learning, comparing MLPs and two116

attention-based models across varying levels of richness and117

connectivity. Our results show that richer and more connected118

environments improve performance for all models, but espe-119

cially for attention models, which consistently generalize bet-120

ter and retain prior knowledge. Attention models uniquely ben-121

efit from task connectivity, likely due to better information shar-122

ing across tasks. Unlike previous work that combats forget-123

ting through replay or regularization (De Lange et al., 2023;124

Verbeke & Verguts, 2019), our approach achieves stability125

through the combination of architectural design and structured126

training environments. Another aspect of task structure is127

stimulus ordering (curriculum learning). Its effectiveness is128

minimal in datasets like CIFAR, but substantial in structured129

tasks like arithmetic (Wu, Dyer, & Neyshabur, 2021; Matiisen,130

Oliver, Cohen, & Schulman, 2017). Curriculum learning may131

be more effective in connected environments, where tasks are132

built on each other, mirroring human learning (Dekker, Otto,133

& Summerfield, 2022). Related ideas in reinforcement learn-134

ing, such as modularity and bottleneck states, also highlight135

how task structure enables flexible learning (Franklin & Frank,136

2018; Tomov, Schulz, & Gershman, 2021; Şimşek & Barto,137

2008; Stachenfeld, Botvinick, & Gershman, 2017). Future138

work will scale up these simulations and test whether humans139

show similar sensitivity to environmental structure, potentially140

linking task design and cognitive flexibility more directly.141
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