Combining Recurrent & Bayesian Models for Action Anticipation with Multiple Cues
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Abstract
Human action prediction involves rapid sensory integra-
tion and deliberative reasoning. Inspired by human stud-
ies, we propose a dual-process model with Reservoir
Computing (RC) for temporal processing and Bayesian
Networks (BN) for uncertainty-aware probabilistic deci-
sions. The RC integrates sensory cues while the BN pro-
cesses the output RC states to refine predictions. We
tested this integrated framework using simulated reach-
ing tasks with cues such as gaze direction, hand move-
ment, and hand shape. The results indicate that our com-
bined system replicates key aspects of human behavior.

Introduction

Human action prediction represents a cognitive brain function
enabling anticipation of others’ movements during social in-
teractions (Kilner et al., 2007; Ambrosini et al., 2015; Roman
etal.,, 2019, 2023). When observing someone reaching for an
object, the brain integrates cues like the other’s gaze and hand
trajectory (Kong et al., 2014; Schydlo et al., 2018). For human-
robot interaction, replicating these predictive processes is cru-
cial to develop systems that can anticipate human actions to
enhance safety and efficiency (Park et al., 2024).

Computational models of behavior aid our understanding of
underlying cognitive and neural mechanisms (O'Reilly et al.,
2010). However, existing action prediction models face key
limitations: (1) they fail to capture the human tendencies to
dynamically rely on cues that evolve over time and may pro-
vide congruent/incongruent information (Groen et al., 2022) ,
and (2) they do not simulate computations observed in bio-
logical systems, such as recurrent signal propagation in neu-
ral circuits (Levi & Huk, 2020). These shortcomings make
the integration of cues challenging; for example, during ob-
ject reaching, one may look at one object but then reach for
another (Ambrosini et al., 2015; Kong et al., 2014)

Our hypothesis is that the recurrent integration of multiple
cues, combined with probabilistic graphical modeling will yield
a plausible model for human action prediction. This hypothe-
sis is grounded in Dual Process Theory, which distinguishes
between Type 1 and 2 processes. Type 1 captures both rapid,
heuristic-driven inference while Type 2 captures slower, re-
flective belief updating under uncertainty. In this paper, we
present a model with recurrent neural processing to integrate
temporal sensory cues over time, followed by Bayesian graph-
ical model to perform structured probabilistic inference.

Methodology
Simulated Anticipation Task
We simulate a reaching task where an actor grasps a target

object placed on a surface in front (left/right). While inspired
by Ambrosini et al. (2015) video-based paradigm, we replace
real videos for a five-dimensional and discrete time series with
seven steps that correspond to an action of 600ms. The five
dimensions are: (1) Object Location that represents the x-
coordinate of the target object with a value of -1/1 (left/right).
(2) Object Size represents the size of the target object with
a value of 0.5 (small) or 1 (large). (3) Hand Preshape repre-
sents the hand configuration prior to grasping, with a value of
0.5 (small) or 1 (large). (4) Gaze direction is represented as -1
or 1 (left/right). (5) Hand Trajectory is a hand’s x-coordinate
that starts at zero and evolves via a directed walk with Gaus-
sian noise to ends at -1/1. The walk models drift toward the
target, capturing both goal-directed movement and variability
observed in human reaching. Object Location, Object Size,
Hand Preshape, and Gaze are variables that remain constant
throughout a trial, while the Hand Trajectory evolves over time
and, importantly, and can either align or misalign with object
location.

Experimental conditions

We include four conditions of cue congruency. If the shape of
the hand matches the size of the object, it is considered to be
congruent; otherwise, it is incongruent. The gaze can be con-
sidered similarly. Therefore, trials are categorized in one of
four conditions: Gaze Congruent/Hand Preshape Congruent
(Gaze C/Hand C), Gaze Congruent/Hand Preshape Incongru-
ent (Gaze C/Hand 1), Gaze Incongruent/Hand Preshape Con-
gruent (Gaze I/Hand C), and Gaze Incongruent/Hand Pre-
shape Incongruent (Gaze I/Hand I). We assess the model’s
accuracy as a function of these conditions.

Coherence and Target Determination

Gaze, hand, and position are random variables, each inde-
pendently coherent or incoherent with object position with
probability 0.5; that is, each coherence variable is an inde-
pendent Bernoulli random variable with success probability of
0.5. A coherence strength factor (0.25) determines the influ-
ence of each coherent cue on increasing the probability that
the final hand position will match object location. The probabil-
ity of final hand position matching object location is therefore

1 1
P=3 + 1 x (gaze_coherent + handshape_coherent), (1)

and it is clipped to the range [0.1, 0.9]. This factor reflects
the human tendency to rely on coherent cues for predicting
actions and aligns with empirical findings showing prediction
accuracy is highest with both cues congruent, intermediate
with one cue, and lowest when incongruent (Ambrosini et al.,
2015). In the simulated dataset the trials are balanced for the
variable of target action (left/right, 50/50 split).
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Figure 1: Accuracy in predicting if a person will reach for an object placed on the left or right. The task uses 600 ms trials with cues that are
either congruent—gaze directed to the object (Gaze C) and hand shape matching the object (Hand C)—or incongruent—gaze directed away
(Gaze I) and mismatched hand shape (Hand ). The left panel shows human data by Ambrosini et al. (2015), and subsequent panels show a
Bayesian Network (BN) model, the Reservoir Computing (RC) model, and the combined RC + Bayesian Network (BN) model.

Models

Reservoir Computing (RC): An RNN architecture with fixed
random recurrent connections that project inputs into a high-
dimensional space, enabling temporal integration without re-
quiring weight optimization (Lukosevicius & Jaeger, 2009;
Maass et al., 2002). The input is the five data dimensions
(object position, object size, gaze, hand preshape, and hand
trajectory). The RC has a 200-neuron reservoir size and re-
currence scaled by p = 0.9. p is a crucial hyperparameter to
govern dynamics, memory capacity, and stability. The output
layer is trained via logistic regression to map reservoir states
to binary predictions (left/right grasp) using gradient descent
and binary cross-entropy loss.

The recurrent component emulates continuous evidence

accumulation in the dorsolateral prefrontal cortex (PFC),
where attractor dynamics maintain task-relevant information
over time (Jensen et al., 2024; Bullmore & Sporns, 2009).
This implementation enables fast, intuitive Type 1 processing
by continuously integrating sensory inputs to form rapid pre-
dictions (Kahneman, 2011).
RC and Bayesian Network (BN): A temporally-aware BN that
processes the states of an RC model. For each timestamp,
the BN selects the top seven informative features using mutual
information and creates a histogram of these to carry out its
probabilistic prediction (left/right grasp).

The BN mirrors inference mechanisms found in cortical and
subcortical loops, using structured graphical models to repre-
sent uncertainty and update beliefs over time (Koller & Fried-
man, 2009; Deng et al., 2016), thus implementing slower, de-
liberative (Type 2) processing (Kahneman, 2011).

Results
Figure 1 shows accuracy by humans in the task, as reported
by (Ambrosini et al., 2015). When gaze and hand are con-
gruent with object location, human performance starts around
80% and reaches 100% at 400ms. The initial prediction of
the RC model is around 60% and it quickly rises approach-
ing 100%. The RC&BN model starts at 90% reaches 100%
around 500ms. When the gaze is congruent but the hand is
incongruent, human performance starts at approximately 70%
and increases steadily approaching 100%. The RC model
begins with a lower initial accuracy (around 62%) but also
steadily climbs to 100%. The RC&BN model starts at around
75% and after 400ms, its performance jumps to 100%. When
the gaze is incongruent but the hand preshape is congruent,

human performance starts much lower, around 36%, but pro-
gressively improves to near-perfect performance by the end.
The RC model demonstrated the worst initial performance,
starting around 24% for an extended period and ending at
about 64% accuracy. The RC & BN model shows high ini-
tial performance (~=87%), fluctuates, and eventually reaches
100% accuracy. Finally, when gaze and hand preshape are in-
congruent, human observers start at a very low accuracy and
gradually improve over the trial to reach near perfect accuracy
by the end. The RC model is unable to overcome the incon-
gruence cues, sitting around 50% accuracy (i.e. chance), until
the late stages when it reaches ~60%. The RC & BN stars
near chance and it reaches perfect accuracy at the end after
a sudden leap at the 400ms mark.

We include a BN baseline showing performance starting at
chance and reaching 99% accuracy across all conditions, re-
flecting higher uncertainty at trial onset due to independent
processing at each time step. The RC variants address this
simplification by projecting data to high dimensions and main-
taining a memory state, similar to human working memory.

It is important to note that in our dataset, simulated trajec-
tories approximate key features of human reaching but rely on
idealized assumptions about motor variability. While concep-
tually inspired by Ambrosini et al. (2015), their study reports
only endpoint statistics (whether the hand reached the same
side as the object) and does not provide temporal hand move-
ment data. Since the original videos are unavailable for track-
ing, validating our simulated trajectories remains an important
direction for future empirical work using motion capture or sim-
ilar methods.

Conclusion
We studied action anticipation when cues may congruently or
incongruently inform target actions. Humans resolve incon-
gruent cues by accumulating evidence over time, achieving
perfect performance. Two of the three model variants that we
studied, the RC and RC+BN models, also carry out this task
by accumulating evidence over time, similar to how humans
do it. However, we observed that the RC model struggles
to resolve the ambiguity when cues are incongruent. In con-
trast, the RC & BN model performed better due to its feature-
selective strategy, even qualitatively surpassing human perfor-
mance. Overall, these results highlight mechanisms behind
effective action prediction and suggest benefits of feature-
selection strategies in computational models facing ambiguity.
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