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Abstract 

Language comprehension hinges upon our ability to 

resolve semantic ambiguities, yet the neural repre-

sentations underlying disambiguation remain un-

clear. To fill this gap, we recorded MEG while partici-

pants listened to German sentences containing an 

ambiguous target word, Blatt (meaning paper or leaf) 

or Tor (meaning gate or goal). In a behavioral pre-

study, participants read these sentences and rated 

which target meaning was most likely. While group-

averaged ratings showed that meaning likelihood var-

ied continuously across sentences, single-trial rat-

ings were categorically biased towards either mean-

ing. To test whether the neural representation of 

meaning likelihood is categorical or continuous, we 

decoded the target word from neural activity and ex-

amined the effect of meaning likelihood on cross-

meaning generalization. Around 800 ms before target 

onset, cross-meaning generalization was most accu-

rate for neutral sentence contexts where target mean-

ings were equally likely. Crucially, this improvement 

in generalization accuracy was parsimoniously mod-

elled by a linear function of meaning likelihood. Thus, 

although explicit semantic judgments are distributed 

categorically, neural processing of ambiguous words 

reflects continuous meaning likelihood. 
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Context enables us to understand ambiguous words like 

‘fly’ on-the-fly, but how? Psycholinguistic theories argue 

that context modulates activation strength within a set of 

categorical meaning representations (Duffy et al., 2001; 

Rodd, 2020). Neuroimaging evidence, however, ques-

tions the existence of categorical representations in the 

first place. Instead, it shows that word representations are 

linearly approximated by those of large language models 

(LLMs) and, therefore, are context-specific and continu-

ous (Caucheteux & King, 2022; Goldstein et al., 2022). A 

simple linking hypothesis is that categorical meaning rep-

resentations are coactivated proportionally to their con-

textual likelihood, yielding a summed activation pattern 

that linearly fits LLM representations. This hypothesis pre-

dicts that the neural representation of an ambiguous word 

in context changes continuously as a function of contex-

tual meaning likelihood. Here, we test this prediction in a 

set of German sentences that constrained the meaning of 

semantically ambiguous words to different degrees. 

Results 

We constructed German sentences that contained 

one of two ambiguous target words, Blatt (meaning 

paper or leaf; N = 150) or Tor (meaning gate or goal; 

N = 150). In an online behavioral pre-study, partici-

pants (45 – 52 per sentence) read the sentences 

word-by-word and rated which target meaning was 

most likely on a continuous scale. Group-averaged 

ratings (Fig. 1a) covered the full range of meaning 

likelihood, including strongly biased and neutral sen-

tences. 

 
Figure 1: Semantic disambiguation behavior. a Aver-

age sentence ratings, mean ± SD, and relative mean-

ing likelihood quantified as 1-|rating|. b R2 between 

empirical and simulated average ratings. c Kernel 

density estimates (KDEs) of simulated single-trial rat-

ings under two models. d KDEs of empirical single-

trial ratings. e Average log-likelihood that empirical 

single-trial ratings are drawn from the model KDEs in 

c. Larger values indicate better fit. 

Semantic Disambiguation Behavior is Cate-

gorical. The observed group-averaged ratings (Fig. 

1a) could stem from single-trial ratings that either rep-

resent meaning likelihood continuously (i.e., capture 

its graded differences) or are categorically biased to-

wards one meaning. To directly contrast these mod-

els, we simulated individual participants’ ratings as 

sigmoid curves with varying sharpness (bias towards 

extremes) and center variability (mean bias). As ex-

pected, average empirical ratings were fit equally well 



by simulations with a broad range of sharpness val-

ues (Fig. 1b), including such where simulated single-

trial ratings clearly distinguished the continuous 

model from the categorical one (Fig. 1c). Crucially, 

empirical single trial ratings were fit significantly better 

by the categorical model than the continuous model 

(Fig. 1d, e; t(19) = –2.48, p = 0.02). Thus, single-trial 

ratings are largely insensitive to continuous meaning 

likelihood1; instead, they are categorically biased to-

wards either meaning. 

Neural Encoding of Meaning Likelihood is 

Continuous. We then asked whether the neural rep-

resentation of meaning likelihood is categorical or 

continuous. Under both models, target representa-

tions are similar whenever its meanings are equally 

likely. Once a particular meaning becomes more 

likely (i.e., relative meaning likelihood decreases; red 

curve in Fig. 1a), the continuous representation 

model predicts a gradual decrease in representa-

tional similarity, whereas the categorical representa-

tion model predicts a sharp non-linear decrease. 

To distinguish between these models, we de-

coded the target word (Blatt vs. Tor) from neural ac-

tivity recorded with MEG while participants (N = 19) 

passively listened to the sentences. Data were split 

into non-overlapping training and test sets, each con-

taining sentences biased towards one of the two pos-

sible meanings for each target word. Therefore, 

above-chance decoding generalization accuracy re-

flects the similarity of neural representations between 

the two alternative target meanings. Using cross-val-

idated ridge regression, we then examined how sin-

gle-trial generalization accuracy is influenced by 

meaning likelihood. 

During target presentation, cross-meaning gener-

alization was above chance (Fig. 2a, black curve). 

This is expected since the auditory word forms of 

each target are similar regardless of meaning. Fur-

thermore, around 800 ms before target onset, cross-

meaning generalization was more accurate whenever 

target meanings approached equal likelihood (Fig. 

2a, red curve), as predicted by both models. Thus, the 

representation of target meaning is activated before 

the acoustic onset of the target word. 

                                                
1 Of note, the empirical single-trial ratings also show a nar-

row peak around the neutral option. We are currently de-
veloping a model that includes a neutral category. 

 
Figure 2: Neural encoding of meaning likelihood. a β 

coefficients from the model of cross-meaning gener-

alization accuracy. b Cross-meaning generalization 

accuracy (β coefficients) per bin of relative meaning 

likelihood. Bold line shows an average linear fit. c 

Bayesian Information Criterion (BIC) of linear and ex-

ponential fits to the coefficients in b. Lower values in-

dicate better fit. d Slopes of the linear fit in c. 

Finally, to test whether generalization accuracy in 

this time window changes linearly (as expected under 

the continuous model) or exponentially (as expected 

under the categorical model), we estimated generali-

zation accuracy separately for seven bins of relative 

meaning likelihood (~20 sentences per bin and par-

ticipant; Fig. 2b). Linear function showed a signifi-

cantly better fit to the binned generalization accuracy 

than an exponential one (Fig. 2c, t(75) = –28.79, p < 

0.0001) and had a slope significantly above 0 (Fig. 

2d, t(75) = 3.99, p = 0.0002). Thus, the improvement 

in generalization accuracy with larger relative mean-

ing likelihood is best described by a linear function, in 

line with the continuous encoding model. 

Conclusions 

Although semantic judgments are largely insensitive 

to continuous meaning likelihood, the brain nonethe-

less encodes it shortly before we hear an ambiguous 

word in context. Specifically, its neural representation 

changes continuously as a function of contextual 

meaning likelihood. This might underlie the alignment 

between the representations of ambiguous words in 

LLMs and in humans. 
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