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Abstract 
Imagination enables the human brain to relive 
personal experiences by mentally simulating 
visual scenes. This ability has been linked to the 
Medial Temporal subsystem of the brain’s 
Default Mode Network (MT-DMN). However, the 
representational codes associated with 
visualizing personal experiences have been 
understudied, in part because quantitatively 
modeling freeform imagination is challenging. To 
target this, we scanned fifty peoples’ brain 
activity with fMRI as they reimagined their 
personal experience of twenty diverse natural 
scenarios (e.g. wedding/funeral/driving). To 
model the visualization of personal experiences, 
we deployed image-generation AI models to 
depict participants’ verbal self-reports of their 
mental images (made outside the scanner) and 
image recognition models to re-represent the 
synthetic image features in a more abstract 
visual form, invariant to view and scale. A 
Representational Similarity Analysis suggested 
that MT-DMN selectively reflected visual model 
structure, when controlling for semantic features 
derived from language models. This effect was 
not observed in other brain networks which were 
more sensitive to the language model. This 
finding helps characterize the neural bases of 
imagination, and earmarks image AI models as 
valuable tools for neurally decoding imagination. 
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Main 
Component processes of imagination and self-
generated thought have been linked to three 

different subsystems of the brains’ default mode 
network (DMN). Medial Temporal DMN has been 
implicated as the “mind’s eye” underpinning the 
mental construction of visual scenes, Core DMN 
is associated with self-referential cognition, and 
Frontotemporal DMN is associated with abstract 
semantic, and social cognition (Andrews-Hanna 
& Grilli 2021, Andrews-Hanna et al. 2014). 
 To test the hypothesis that MT-DMN 
selectively simulates visual information structure 
during imagination, fifty neurotypical adults were 
recruited to undergo an fMRI experiment 
illustrated in Figure 1 Step 1. Before scanning, 
20 generic scenario cues (e.g. dancing, 
exercising, wedding) were read to each 
participant, who vividly imagined themselves 
personally experiencing each scenario 
(Anderson et al. 2020). Participants provided a 
brief verbal description of each mental image. 
Participants then underwent fMRI as they re-
imagined the same scenarios in random order on 
written prompt. fMRI preprocessing produced a 
single fMRI volume for each mental image per 
participant.  

To test fMRI data for visual information 
structure, Stable Diffusion (Podell et al. 2023) 
was deployed to synthesize five images 
corresponding to each mental image scenario 
description (20*5 images per person). Because 
it was unreasonable to think that Stable Diffusion 
would synthesize the finer details of mental 
images, such as the spatial configuration of 
actors/objects, we transformed the synthetic 
images to more abstract visual representations 
reflecting the visual identity of object categories 
via the image classification model VGG 16 
(Simonyan & Zisserman, 2015). We extracted 
embedding vectors from the final layer (Fc8), 
and pointwise averaged embeddings across the 



 
Figure 1. Step1 Data and Models. Step 2 Analysis to expose selective sensitivity to model structure. 

five synthesized images vectors corresponding 
to each participant’s description of one mental 
image, following related work (Anderson et al. 
2017). 

To control for non-visual semantic 
structure in the fMRI data, we also modeled 
participants’ mental image descriptions with the 
language model GPT-2 (Radford et al. 2019). 
Embedding vectors from Layer 16/24 were 
extracted, following evidence that layers at 2/3 
depth are a good choice for modelling fMRI data 
(Caucheteux, Gramfort & King, 2022). 

 
Figure 2. MT-DMN reflects the visual model 

To test for visual information structure 
selective to MT-DMN, fMRI data was extracted 
from 17 pre-defined brain networks, according to 
the Yeo parcellation scheme (Yeo et al. 2011). 
These included MT/Core/FT-DMN. A partial 
correlation Representational Similarity Analysis 
(Kriegeskorte, Mur & Bandettini, 2008) was then 
used to compare fMRI data within each network 
to the visual model representations, controlling 
for the language model, and vice versa (Figure 
1 Step2). 

Signed ranks tests applied to the partial 
RSA coefficients (n=50) revealed that the visual 
model made a selectively strong contribution to 
explaining the representational structure of 
within MT-DMN, and much weaker contributions 
to all other networks (Figure 2 Camera Icon).  

The language model made an equivalent 
contribution to explaining MT-DMN but made 
stronger contributions to explaining fMRI data in 
Core/FT-DMN and other networks (Figure 2 
Book Icon). 

Conclusions 
This work supports the hypothesis that 

MT-DMN selectively contributes to visualizing 
mental scenes in imagination and demonstrates 
how AI image models can be deployed to help 
interpret the neural bases of imagination. 
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