Contributed Talk Sessions | Poster Sessions | All Posters | Search Papers
Poster Session C: Friday, August 15, 2:00 – 5:00 pm, de Brug & E‑Hall
Large Language Models are Highly Aligned with Human Ratings of Emotional Stimuli
Mattson Ogg1, Chace Ashcraft1, Ritwik Bose1, Raphael Norman-Tenazas, Michael Wolmetz1; 1Johns Hopkins University Applied Physics Laboratory
Presenter: Mattson Ogg
Emotions exert an immense influence over human behavior and cognition in both commonplace and high-stress tasks. Discussions of whether or how to integrate large language models (LLMs) into everyday life (e.g., acting as proxies for, or interacting with, human agents), should be informed by an understanding of how these tools evaluate emotionally loaded stimuli or situations. A model’s alignment with human behavior in these cases can inform the effectiveness of LLMs for certain roles or interactions. To help build this understanding, we elicited ratings from multiple popular LLMs for datasets of words and images that were previously rated for their emotional content by humans. We found that when performing the same rating tasks, GPT-4o responded very similarly to human participants across modalities, stimuli and most rating scales (r = 0.9 or higher in many cases). However, arousal ratings were less well aligned between human and LLM raters, while happiness ratings were most highly aligned. Overall LLMs aligned better within a five-category (happiness, anger, sadness, fear, disgust) emotion framework than within a two-dimensional (arousal and valence) organization. Finally, LLM ratings were substantially more homogenous than human ratings. Together these results begin to describe how LLM agents interpret emotional stimuli and highlight similarities and differences among biological and artificial intelligence in key behavioral domains.
Topic Area: Language & Communication
Extended Abstract: Full Text PDF