Contributed Talk Sessions | Poster Sessions | All Posters | Search Papers
Poster Session C: Friday, August 15, 2:00 – 5:00 pm, de Brug & E‑Hall
From Images to Perception: Emergence of Perceptual Properties by Reconstructing Images
Pablo Hernández-Cámara1, Jesus Malo2, Valero Laparra3; 1Universidad de Valencia, 2Universitat de Valencia, 3Universitat de València
Presenter: Jesus Malo
A number of scientists suggested that human visual perception may emerge from image statistics, shaping efficient neural representations in early vision. In this work, a bio-inspired architecture that can accommodate several known facts in the retina-V1 cortex, the PerceptNet, has been end-to-end optimized for different tasks related to image reconstruction: autoencoding, denoising, deblurring, and sparsity regularization. Our results show that the encoder stage (V1-like layer) consistently exhibits the highest correlation with human perceptual judgments on image distortion despite not using perceptual information in the initialization or training. This alignment exhibits an optimum for moderate noise, blur and sparsity. These findings suggest that the visual system may be tuned to remove those particular levels of distortion with that level of sparsity and that biologically inspired models can learn perceptual metrics without human supervision.
Topic Area: Visual Processing & Computational Vision
Extended Abstract: Full Text PDF